Chapter 3
A linear operator relating interval velocities

and migration velocities

3.1 INTRODUCTION

In the preceding chapter I described how to find prestack time-migration veloci-
ties, and showed that, for complex structure, they provide a natural generalization of
stacking velocities. Migration velocities can be evaluated similarly to conventional
stacking velocities, but are corrected for the structural effects that can drastically
bias stacking velocities. However, these migration velocities will equal the medium
acoustic velocity only when that velocity is constant. What do these ‘“velocities”

mean when the medium velocity is varying?

Although I use migration operators formulated in the frequency domain in the
methods presented in chapter 2, they may be visualized also in the time-space
domain. In that domain, migration is a weighted sum over a diffraction surface, and
the time-migration velocities specify the curvature of this surface. Thus, these
migration ‘“‘velocities” are not physical velocities, but instead are simply free parame-
ters in the prestack time-migration operator. What one really requires are the inter-
val velocities, particularly when the velocities vary substantially laterally. For weak
lateral velocity variation, a time-migrated image provides an adequate picture of the
subsurface, but for stronger lateral variation, depth migration is needed, for which

one must know the true interval velocities.

Clearly, however, the observed migration velocities are not simply arbitrary,
but depend on the underlying interval velocities. In general, the relation between the
two Is complicated and non-linear, so in this chapter I derive a linear approximation
describing the changes in migration velocities caused by small perturbations in inter-
val velocities. As I show below, this operator may be viewed as a filtered version of
more conventional tomographic back-projection. Like conventional tomography, this

method uses kinematic, or traveltime, information, but rather than requiring direct
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measurement of the traveltimes associated with specified reflection events, this
approach uses the migration velocities, which are themselves functions of the travel-
times. The “filter’” in this variant of tomography thus unscrambles the relation
between the observed migration velocities and the traveltimes that implicitly underlie
this computation. This chapter focuses on the derivation and properties of the linear
operator and its relation to traveltime tomography; chapter 4 discusses the use of
this operator to invert migration velocities for interval velocities. In both chapters,

for simplicity, I restrict the discussion to two-dimensional data.

3.2 A LINEAR OPERATOR

It is conceptually and notationally easier to work here with slowness rather
than velocity, because traveltimes are the integrals of slowness, rather than of velo-
city. Write the migration slowness s as a function of midpoint y and zero-oflset
time 7, and the interval slowness m as a function of lateral position z and depth z.
The relation between these two slownesses will generally be nonlinear. Inverting
migration slownesses for interval slownesses thus requires an iterative solution, using
a linear approximation to find a gradient direction to update a model at each step.
What is needed is an expression for dsy /dm, , relating a change in interval slowness
at a particular model anomaly point a=(z, ,z,) to the resulting change in observed
migration slowness at some point d=(z;,2; ) in the data space. That is, one wants a

linear operator G such that
As(z4,24) = G Am(z, ,2, ) . (3.1)

One complication is immediately apparent. The migration slowness data s (y;,74),
are a function of the midpoint ¥ and migrated time 7, and not directly of the physi-
cal position (2,2 ). Hence one needs to know how to relate (z;,24) to (y;,74). This
suggests beginning with a model for which this map is known (such as a laterally
invariant average background), and updating this map at each iteration by comput-
ing changes in the migrated location in time, A7;, and midpoint, Ay, , as well as the

change in migration slowness As;. The operator G thus has three parts:

ASd Gs
Aty |= | G, | Am. (3.2)
Ayd Gy

As I show later in this chapter, one also needs to incorporate information about

local dips in the operator. This dip information can be estimated from the time
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migrated image extracted from the constant-velocity prestack time migrations using
the current estimate of the migration velocity function. These dips will be slopes in
migrated time, so as the local estimate of the migration velocity s; is updated, the
conversion to physical dips will also change. Thus, at each iteration both the posi-
tion (z;,z;) and the dip 8, corresponding to a point (y4,7;) in the time migrated
data will change. In effect, one computes a mapping from a time-migrated image to
a depth-migrated image as one iterates away from a laterally invariant velocity
model to a laterally varying one, a mapping similar in effect to that found by tracing

image rays (Larner et al., 1981).

3.3 FILTERED TOMOGRAPHY

The construction of the operator G can be split into two parts. The first part
finds 9t /Om by tomography, and the second finds ds /0t, dr/dt, and Jy /Ot by
generalized inversion of double-square-root traveltime equations. The operator G

thus decomposes into a tomographic operator B, and a filtering operator A:
ASd
Ar; |=ABAmMm. (3.3)
Ay,

The operator A that expresses the double-square-root traveltime equation perturba-
tions is not found directly. Instead a forward operator C is found that relates trav-
eltime changes At to perturbations in the parameters As;, A7r;, and Ay;. Then
A=C"?  where the superscript —g is used here to mean that A is a generalized

inverse to C.

Relating model perturbations to traveltime perturbations

The computation of traveltimes to a subsurface point given a velocity model is
done readily by ray tracing. For a ray R, the traveltime is just the integral along a

ray of the slowness m :
t = f m dr (3.4)
R

where r is the arc length along the ray. Invoking Fermat’s principle, one can per-
turb the model and calculate the changes in traveltimes integrating the slowness per-

turbations along the unperturbed ray R :

At = [ Am dr =B Am. (3.5)
R
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In discretized form, this gives a linear operator B relating interval slowness perturba-
tions to travel time changes. For general background models, computation of B
requires tracing rays; for a constant slowness background, this operator can be found
analytically. This is a standard computation for a tomographic inversion. However,
rather than pick traveltimes and try to invert B to find interval velocities, I use the
migration-velocity filter A so that events never need to be picked explicitly, which

should be a boon in noisy or complicated data.

Relating traveltime perturbations to diffraction pyramids

Consider first a single point diffractor at d=(z;,2;) in a medium of constant
slowness s. If one runs a seismic survey passing over this point, the kinematics of

the pre-stack point diffractor are described by the equation

t =5z Hy-h—24)" + s /2y +h -z, (3.6)

where ¢, y, and & are the traveltime, the midpoint, and the half-offset specifying an
event in a particular trace. In a space with midpoint, offset, and time as coordinates,
this equation describes a pyramidal surface with rounded corners, as illustrated in
Figure 3.1. This pyramid is the summation surface for a Kirchhoff integral formula-
tion of prestack time migration; it is the generalization to non-zero offsets of the
hyperbolic diffraction surface used for zero-offset migration. The migration slowness

describes the curvature of this pyramid, that 1s, how flat or peaked it appears.

Suppose now that the slowness model is perturbed. The travel-time data for
the point diffractor, {#; v;,h }, no longer satisfy equation (3.1) exactly. However, if
the perturbations are not too large, there exist a slowness 84, a zero-offset time 7,4,

and a lateral position y; for which an equation of the form

t = /17/4+ 5,5y —h ~ya )2+ \/1i/4 + sy +h -y, )? (3.7)

best fits the data points in a least-squares sense.

One can solve the problem of fitting such a pyramid through the data points
{tix ¥i ki } by linearizing around an initial value of (54,74,54). One gets the set of

equations

A A ot ot ot
At (y; by ) =ty — t(34,74,04) ~ Do Asy + 3, Aty + By Ay, (3.8)
d d d

where all the partial derivatives are evaluated at (84,74 ,94 i bt ); there will be one

equation for each midpoint-offset pair. Written as a matrix equation, this becomes
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N

FIG. 3.1. Pyramidal traveltime surface for a point diffractor in prestack data. The
coordinates are midpoint y, offset h, and traveltime ¢ . Contours are curves of equal
traveltime. On the left is a view looking vertically down the ¢ axis. On the right is
an oblique view. These pictures schematically illustrate equation (3.6). The
migrated time 7 and midpoint y define the location of the apex of the pyramid. The
migration slowness s controls the curvature, or how broad or peaked the pyramid is.

ASd
Ay,

where C is a matrix of the partial derivatives of ¢{. Letting A=C™ be a generalized

inverse for C, one can write

ASd
Aty |=C?At=A At=AB Am (3.10)
Ay,

which is just the desired decomposition of G.

If this generalized inverse is taken in the usual least-squares sense (see, e.g.,
Menke, 1984), the normal equations can be solved explicitly. Toldi (1985) used an
explicit solution of this form for stacking velocities, and I use one simple case of an
explicit solution to equation (3.10) in section 3.8 to show how to derive Toldi’s opera-
tor for flat dips from the more general one presented here. For the general operator,
however, the computation of an explicit closed form solution becomes too compli-

cated to be useful. Moreover, the explicit solution will be unstable for reasons I
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discuss in section 3.7. I use singular value decomposition (SVD) to give a stable
inverse, zeroing singular values that are too close to zero. Because there are only

three singular values here, the computational cost of SVD is minimal.

The least-squares fitting in the inversion of C to find A can incorporate an
arbitrary weighting of the different rows in equation (3.9). I know of no strong
theoretical motivation for favoring any particular weighting. In section 3.8 I show
that Toldi’s approach is equivalent to using weighting proportional to the total trav-
eltime, because of his use of a transformation to t?-k2 coordinates in defining the
least-squares inverse. In practice I have usually used a weighting for even sampling in
angle rather than in offset, as I discuss further in section 3.6. Numerical testing sug-

gests that the choice of weights has only a small effect on the result.

3.4 COMPUTING THE GENERAL OPERATOR

To see how G is computed, let

A,
A=CY = | A, |. (3.11)

A,

A specific set of rays corresponding to particular choices of midpoint and offset sam-
pling are used in defining C, and hence in finding A. In general, if one specifies a
subsurface reflector point d and an anomaly point a at which the velocity is to be
perturbed, the rays that pass through this velocity anomaly and reflect from the
specified point d will not be part of the set used in defining C. This is not a prob-
lem, however, because once the inverse operator A has been found for a specified set
of values of y and A, interpolation can be used to calculate the operator anywhere
other than at the original sampling points, as long as the anomalous ray is within the
aperture limits set by the extreme values used in the initial fitting. In effect, the
back-projection is weighted by a set of coefficients that implicitly interpolates onto

whatever grid points are needed.

Figure 3.2 shows the geometry of the ray path for a particular diffractor point,
midpoint, and offset in an arbitrary velocity model. Let the subscript d refer to the
coordinates of a particular diffractor point d=(z; 2; ), and let the subscript a refer
to the location of a slowness anomaly a=(z, z, ), that is, a particular element of the
model m. Such an anomaly at a depth z, can affect the diffraction pyramid if it is
at either of two positions z,, since it can be intercepted by either the ray going

down or the one coming back up. Using the notation of Figure 3.2, equation (3.5)
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becomes

61 62
At — [d dz. A 2, 3.12
ik f Za f Ta 2T (l‘a z )[ COSI/)ik (Za ) * COS¢,‘[¢ (za ) ( )

Zq Zg
where the delta functions 6; and &, are defined by
8y = b[z, —y's (20 )+ pix (24 )] (3.13)
and
8o = 6[mg ~y'i (20 vk (24 )] - (3.14)

These delta functions pick out the values of the anomaly locations (z;,24 ) that lie on
a particular ray. The parameters g and v are the effective offsets of the two legs of
the ray path at each depth; they are measured from the point y’(z,) on the zero-
offset ray. The angles ¥ and ¢ are the ray directions at the anomaly depth. The
cosine factors are introduced to convert from integration along the ray itself to
integration over the depth z,. Because most rays in reflection experiments are more
nearly vertical than horizontal, it is natural to use an integral over z, rather than
one over the lateral position z,. In converting to such an integral, however, I impli-

citly rule out the use of turning rays in the computations that follow.

Now assume that a rule is known associating a diffracting point (z4,z;) with
the point (y4,74) where it appears in the data. Looking first at As;, one can write

equation (3.10) as

Asy(ya,7a) Z E )it Atiy (3.15)
and substitute from equation (3.12) for Aty to yield

Asy (?/d ,7',1) = Z Z (As )ilc fdza fdza Am (xa %a ) X (3'16)
H k 2z, z,

6 L 8
cosp (2,)  cosgy (2)
Pull the integrals outside the sums to get

As(d) = fdz fdx (d,a)Am (z,,z,) (3.17)

where

L 5 5
Gs(d,a)zz]Z(As)ik[ L+ 2 1k (3.18)

) costhr (2,)  cosdy (2,
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(X4:2)

FIG. 3.2. Geometry of rays for a single diffractor point and a variable background
slowness. The rays for a single trace with midpoint y and offset A are shown, along
with the zero-offset ray. The diffractor is at (z4,z;). The point in the model at
which the slowness is perturbed is at depth z,. The quantities ¢, ¥, u, v and y' are
used in calculating the effect on the travel-time of perturbing the slowness.

Now the linear operator is written explicitly as an integral with a Green function
kernel. This Green function G, (d,a) can be identified with ds; /Om, ; they both
represent the change in s (y,7) caused by a perturbation in m (z,z). One can also
write similar Green function representations for G (d,a)= dr; /dm, and for
G, (d,a) = dy; /Om, simply by substituting A, or A, in place of A, in equation
(3.18).

Evaluation of the Green function G, against a general background velocity
model requires tracing rays for each diffractor and each midpoint y and offset h.
Once the ray paths are known, the various values of u, v, y', ¢, and 1 can be com-
puted. Note that the delta functions were introduced in equation (3.12) to pick out
those values of z, and z, that fall on a specified ray. In evaluating the Green func-
tion the role of the delta functions is turned around: it is assumed that the slowness
anomaly location a is known, and the delta functions are now used to pick out the

ray from the reflecting point d to the surface that passes through a.
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Consider first the sum containing &,

o= COS"abtk (z )
Ny Ny s (Ui e ) 6z, —y's (25 )+a (24)]
;_]1 El costy, (2, ) . 20

Note that for z, =0, one has p; =h;, and y;'=y,;. The delta function was defined
to pick out a particular z, for a specified z,. Now I want to change variables so
that it picks out a particular value of the offset A corresponding to the ray through

a. Let v be the relative offset at depth 2, compared to the surface offset hi , that is,

Py
Wyi by 2, ) = ——— . 3.21
ool %) = ) 321

At zero offset, this expression becomes formally undefined, and must be evaluated as
a limit. This is not a significant problem, because the limit is well behaved and v is
continuous approaching zero offset; the apparent ambiguity is caused simply by the

choice of variables. In Appendix B, I show how to compute y(h =0).

Changing variables in the delta function then gives
8lza —y's (20 )+ min (20 )] = ¥(wi Py 124 ) 5[7(.1/,- P20 ) (8 =y’ (2, )] + Iy ] -(3.22)

Now approximate the sum over k; as an integral, and use the delta function to elim-

inate it. Let Ah be the survey offset spacing. Then

G, )(d.a) o (90 ) Ay b 2,) h s A
(G 1 5_) L [al ot ey Oz ey (2 )+ (3.23)

For a specified midpoint y;, let ; be the particular value of h corresponding to the
ray from d through a. (Note the change in subscript from £ to 7.) The value of h;
can be found by tracing rays. The delta function zeroes out all other values of h, so

that
b ==l he ) 2y (z) | (3.24)

or

-y
. (3.25)

Wi hi 2, ) = [xa e )]

Then
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1 . As (yi :hi) '7(yi ;hi 1%a )

= E 3.26

(GS )l(d)a') Ah ~ COS'(pi (h1 ’za) ( )
1 ~h; A, (y; ,h;)

_ . (3.27)
Ak i [%—y'i (za)] cost; (h; ,2,)

A similar argument can be used to compute (G, )s(d,a), corresponding to the
other leg of the ray path. The resulting expression becomes
NY
1 hi As (yi,hi)
(G 1da) = 2 3 R

i=1 [za—y'i(za)] cosd; (h; ;24 ) | 29

Equation (3.28) is equivalent to equation (3.25) with —h; substituted for A;,
that is, to the reciprocal experiment with shot and receiver locations interchanged.
(Note that A (y;,~h; )=A (y; ,h; ), and that the meanings of the angles ¢ and ¢ will
be interchanged as well, since the identification of the downgoing and upcoming legs
of the ray path are reversed.) Because I now am assuming that a is known, the
separate delta functions for the two legs of the ray path are redundant. Including
both terms corresponds to including the reciprocal experiment which, since only the
kinematics of isotropic P-waves are being considered, contains no additional informa-

tion. Hence I can always take h; to be positive and write the complete operator sim-

ply as
Ny
h; A . h.
G, (d,a) = Alh 3 i Ao (4 hi) (3.29)

i=1 cosy); (h; 2, )

Tq _yi’ (za )

where now I use 9 to indicate the ray angle at a regardless of which leg is being con-

sidered.

Thus, computing the operator G,(d,a) requires tracing two rays from d for
each midpoint y;: the zero offset ray to the surface point (y;,0), and the ray that
passes through a. One needs to find from these rays the surface offset h;, the
effective offset =, —y;’' (2, ) at depth z,, and the ray angle cosy; at a. These compu-
tations are greatly simplified for a laterally invariant background, since the operator
1s then convolutional in the lateral direction z ; the ray tracing becomes identical for
all midpoints and need only be done once. Note that a rule for finding (y;,7;) as a
function of (z,,z4) is also needed, and that this rule too is greatly simplified for a
laterally invariant background. The whole computation of G, is even easier for a

constant background, and may be done analytically in that simple case, as I discuss
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3.5 WEIGHTING DIPS SELECTIVELY: THE DIP-DEPENDENT OPERATOR

So far I have derived an expression for ds /dm for a point diffractor. In a con-
stant velocity medium the migration slowness is independent of structure, so the
value of migration slowness measured for a point diffractor is the same as that meas-
ured for any structure. This does not guarantee, however, that ds /dm is also struc-
ture independent; in fact it depends on the reflector dip. One does not normally see
pyramidal traveltime surfaces in seismic data. Discrete point diffractors are rare;
reflections from continuous beds usually dominate the data. These continuous
reflections can be built up mathematically as a limiting sum of many point
diffractions; constructive and destructive interference of the waves results in the con-
tinuous events one observes. Similarly, in migration, when summing over the entire
traveltime pyramid, one is implicitly back-propagating waves, and treating each
point as an isolated diffractor. Here, however, one is back-projecting traveltimes
rather than back-propagating waves, and no wave interference effects occur. Hence
one has to introduce explicit information about the continuity of reflectors in the
form of knowledge of dips. Rather than considering rays corresponding to all mid-
points and offsets, one has to single out those rays that obey the simple rule from
geometrical optics that incident angles must equal reflected angles; these will be the

only rays that carry significant energy.

Suppose the reflecting point d lies on a bed with dip 4. Figure 3.3 shows the
geometry of rays reflecting off such a dipping bed. Unlike the rays used for
stacking-velocity analysis, the rays for migration-velocity analysis have a common
reflection point, and (barring caustics caused by the velocity field) do not cross each
other. Note that the ray picture for migration-velocity analysis is like that for flat-
bed stacking-velocity analysis, but rotated by the dip angle so that the rays remain

symmetric around the normal incidence ray.

Each point diffractor can be treated as made up equally of all dips. Limiting
the point diffractor Green function to a single dip component thus has the effect of
zeroing out all but a particular value of y in the sum of equation (3.29). This
corresponds to selecting the one ray that passes through the anomaly a and has
equal incident and reflected angles at the point d on a bed with dip 6. Write the
values of midpoint and offset that describe this unique geometrical optics ray as h,

and y,. Equation (3.29) then becomes
ho As (Yol o)

( G, )G(d)a') - .
cosgy(z, )

(3.30)

Ah

Ty _ylﬂ(za )
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The different terms in equation (3.30) can each be understood easily. A, comes
from the least-squares fitting of traveltimes to a diffraction pyramid, and it is
evaluated at the point corresponding to the unique geometrical optics ray. The fac-
tor of h /| z,~y'e(2,) | is the normalized cable aperture at depth z,, and acts as a
weight to allow for increasing ray density in the fan of rays from the subsurface
point d to the surface. If the slowness anomalies are assigned to cells of equal size, a
cell closer to d will be traversed by more rays in this fan than a shallower cell would
be, and so should be weighted more heavily. The factor of Ah arises from using a
discrete sampling in offset A . Increasing the number of offsets within a given offset
range increases the ray density accordingly, causing more rays to traverse a given
slowness anomaly cell, and so G, must be scaled accordingly. Finally, the cosine fac-
tor arises from treating the rays as parametrized by the depth z,; the cosine con-
verts from the vertical distance to the arc length for a ray that is not traveling verti-
cally. In summary, (G, ), is just A, weighted by terms that arise from the ray

geometry and the model parametrization.

A subtle, but important, point to notice here is that A, in the equation (3.30)
should really be written as (A, )4, since A, will in fact now be different for each dip.
The least squares fitting used in the inversion of C to get A must also be taken only
over the constant velocity geometrical optics rays, which differ for each dip, rather
than over the whole pyramid. The traveltime pyramid can be decomposed into com-
ponents corresponding to different dips. Then, instead of finding a best fitting
diffraction pyramid, only the particular part of the pyramid that corresponds to the
single dip 8 is fitted. Figure 3.4 shows a pyramid decomposed into dip components;
the heavy solid lines show the (y,h,t) curves for various dips. These curves are gen-
eralizations of hyperbolic NMO stacking curves that define the effective summation
paths for prestack time migration. Standard NMO stacking sums data for all offsets
at a fixed midpoint; this is the hyperbolic moveout curve corresponding to flat dip in
Figure 3.4. For dips other than zero, the summation is along one of the generalized
moveout curves in both midpoint y as well as offset A . Prestack migration actually
always sums over the entire pyramid, but if only one dip is present, only data along
the corresponding generalized stacking curve contributes constructively to the

migrated image.

In Appendix C, I derive equations describing this decomposition of the travel-
time pyramid into the contributions corresponding to different dips. The midpoints
v and offsets h that represent valid rays for a given dip € and a constant velocity

background must satisfy
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Common reflection point

(x4,2,)

Common midpoint

N

FIG. 3.3. Geometry of rays for a dipping bed and a constant background slowness.
The upper picture shows a common-reflection point gather, with rays for various
incident angles. The reflecting point is at (z;,z;). The lower picture shows a
common-midpoint gather, with rays for traces with a single midpoint and various
offsets h . Note that in the first picture, midpoint changes with offset, whereas in the
second, the reflection point moves with offset. The zero-offset ray is shown as a
dashed line in both pictures.
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FIG. 3.4. Dip-decomposition of a pyramidal traveltime surface for a point diffractor
in prestack data. The coordinates are midpoint y, offset A, and traveltime ¢ . Light
contours are curves of equal traveltime. On the left is a view looking vertically down
the ¢ axis. On the right is an oblique view. Heavy lines represent constant dip con-
tributions, in increments of 5 degrees.

224 (y-2,)

. (3.31)
24"~y ~24 )+h*

tan(26) =

These dip component curves, projected into the (y,h) plane, are hyperbolas, as
shown in the vertical view of a traveltime pyramid in Figure 3.4. Flat dip is the lim-
iting case in which the hyperbola becomes a straight line, with A =0 and y=z,.
Note that these curves are not the same as the hyperbolas seen in radial trace sec-
tions (Claerbout, 1985); these moveout curves are not hyperbolas, although their pro-
jections in (y,h ) are. Moreover, even the hyperbolic projections are generally not

centered around z;, .

What does this mean in practice? It suggests that the operator should be
weighted to reflect the dips actually present in the data at each point. For the case
of a single dip component, these weights are just delta functions that would pick out
the contour representing a given dip, and are zero elsewhere. In practice, one might

weight by an estimate of the dips in the data, allowing for multiple dips and
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inaccurate knowledge of the dips. Reasonable dip estimates can be obtained from
the migrated image using local slant stacks. The G, operator can then be weighted
by this estimated dip spectrum. Picking a single dominant dip at each point
corresponds to the usual practice in tomographic inversion of digitizing horizons;
using a weighted spectrum of dips “blurs” the back-projection, allowing for the
uncertainty with which one can really determine dips from data. These dips will be
slopes in migrated time so, as the local estimate of the migration velocity s; is
updated, the conversion to physical dips will also have to be updated. Thus, at each
step of an iterative, nonlinear inversion, the dip 8; as well as the position (z;,2;)

corresponding to a point (y;,7,;) in the time-migrated data will change.

Finally, note that the above discussion concerned only G; but the complete
operator is tripartite, as developed in section 3.2. The extension of equation (3.30) is
straightforward, however. The entire derivation is the same for G, and G,, with
equivalent expressions obtained simply be replacing A, in equation (3.30) by A ; and
A, , respectively.

3.6 THE LINEAR OPERATOR FOR CONSTANT SLOWNESS BACKGROUND

The case of constant slowness background is particularly useful for understand-
ing the behavior of the G operator. If the background slowness model is constant the
rays in Figure 3.2 are straight, ¢ and ¢ become independent of z,, and p==v. As
argued in section 3.4, I can use either leg of the ray path in computing G, ; I choose

the left-hand leg in Figure 3.2. Explicitly,

=t __h__ % (3.32)

!
1 Y —Z 24 %

The last equality is derived using similar triangles. As defined in equation (3.25), ~
normally depends on the midpoint y;, but here « is independent of which y; is being

considered, and depends only on z, and z;. Another application of similar triangles

shows that
y—h-z4 = A(z,-24) . (3.33)
From this, one also has that
) 5 17172
cosy = 2 [zd +y-h-z;) ] (3.34)
-1/2
= 24 [zd2+’72(xa —24)? ] : (3.35)

Making these substitutions into equation (3.29) yields
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(X4:24)

FIG. 3.5. Geometry of rays for a dipping bed and a constant background slowness.
The rays for a single trace with midpoint y and offset A are shown, along with the
normal ray (dashed). The reflecting point is at (z;,2z;). Note that the normal ray
does not go through y .

N,
1/2 <
G.@a) = I [attm =" L A m ) (330
i =1

where h; can be found from equation (3.34). The single dip operator can be found

similarly by substituting into equation (3.30) to get

1/2
G(aa) = o [ | A(wal hal) (3.37)

The explicit values of y, and h4 are

2 (2, 24 )?
2(z4 cot20+~(z, ~24 )]

Yg= 24+ (3.38)

and

2847 (2, 2y )

h,=
6 2(z4 cot20+~(z, —24 )]

-z, —z4) |- (3.39)

For a derivation of these last equations, see Appendix C.
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The y and & in the above equations will now usually not fall on grid points,
but A can be calculated for any y or A numerically, as discussed in section 3.4. In
all these computations against a constant-slowness background, one can use
(74,4 )=(2s24,75) if an explicit relation between As(y;,7;) and As(z;,z;) is

needed.

The constant velocity single dip case can provide useful insight into weighting
schemes to be used. First, as mentioned in section 3.3, the least squares inversion of
C to get A can include an arbitrary set of weights. Computation of the full G
operator requires tracing a set of rays from the point d to the surface, which is easi-
est if done in equal angular increments away from normal incidence at the bed. Call
this angle between the two legs of the ray path 3, as indicated in Figure 3.5. Then it
is natural to weight the fitting over offset o by d8/8h to make the fitting equivalent
to one over the angle 8. The value of this derivative is also calculated in Appendix

C; the result is given by

B _ zg (2°+(y -4 *+h?)
Ok~ T ly 2a P rh? Prazg(y 24 ) (340
— 24 (zd2+(y —X4 )2+h 2) ] (341)

[ 2%y —24 )*+h 2 )*~4(y -2, )*h *

These are the weights I have used in all the examples that follow, except in the com-
parison with Toldi’s operator in section 3.8. However, as mentioned in section 3.4,
numerical testing suggests that the behavior of the operator is insensitive to the

choice of these weights.

One can combine the operators for all dips and write

G,(d,a) = [d6 g(d) (G,)id,a) (3.42)

where ¢ represents weights corresponding to the estimated dip spectrum at d. The
multi-dip operator was originally formulated in equation (3.29) as a sum over mid-
point y instead of angle . If one were to implement it this way it would be natural
not to favor one dip over another, and hence to weight the sum (or integral) over y
by 96/0y. The value of d/dy for the constant velocity background is derived in
Appendix C; it is identical to d8/0h as given in equations (3.40) and (3.41).



-84-

3.7 ADEGENERATE DEGREE OF FREEDOM

In implementing the single-dip constant-slowness operator, I found that the
matrix C was persistently singular. Singular value decomposition of C showed that
there was always one singular value that was far smaller than the other two, suggest-
ing that only two of the parameters As;, A7y, and Ay; could be found indepen-
dently. For the flat bed, this may be understood readily. Explicitly, the derivatives

in equation (3.8) are given by

Loy . sa(y—h-yz)°
= 74 /4 (3.43)
\/;(12/4 + Sd2(y —h —Yq )2 3d2(yd —y +h )

t,,

Y4

sq(y+h—yy )
T4 /4
sq°(Ya—y—h)

1
Vi/A+ sy +h -y )

where, to make the notation more compact, I denote the partial derivatives by sub-
scripts: 9t /0sy =t, , etc. But for flat beds, y=yy always, and ¢, is identically
zero, so there are only two, not three, independent parameters to be found; hence C

will be singular.

Why is C also singular for non-zero dips? Intuitively, the ray picture for
migration-velocity analysis (the common reflection point gather in Figure 3.3) looks
like that for flat-bed stacking-velocity analysis, but rotated by the dip angle so that
the rays remain symmetric around the normal incidence ray. For flat dips one can
resolve changes in 7,4, that is, vertical changes, but not changes in y; horizontally
along the bed. For the dipping bed it is reasonable to expect that one can similarly
resolve changes perpendicular to the bed, but not parallel to it. Specifying a fixed
dip angle @ eliminates one degree of freedom in the fitting function and makes it

translationally invariant along the dip direction.

In terms of the angles ¢, ¥, 6, and 8 in Figure 3.5, one has

2 —h -
tanw — M , (344)
Td
sing = saly—h) , (3.45)

V714 + sy +h—yg )

and
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cosy) = > Td2 5 - (3.46)
20/13/4 + sy +h—yq )

The equations for ¢ are the same, with y +h in place of y—h. In terms of these

angles, the last two derivatives in equation (3.43) become

t, — % (cosd + cosp) (3.47)
-1 [ cos(6-6) + cos(6+6) ] (3.48)
— cosf cosf (3.49)
and

t,, = —s4 (sing + sin) (3.50)
— s [ sin(6-5) + sin(0+8) | (3.51)
— 25, sind cosg . (3.52)

Thus, if 8 is fixed,
s — 25, tanf . (3.53)

and so Ay; and A7y cannot be found independently. In practice, this means that,
no matter what set of parameters is used, only two will be independent, and small
singular values of C will need to be zeroed if three parameters are used in the inver-
sion. Alternatively, C may be inverted in terms of only two variables, with the third

found explicitly from these two.

3.8 THE FLAT-DIP OPERATOR

I now look in detail at the special case of #=0. This operator should behave like
Toldi’s stacking operator, since for flat beds and laterally invariant velocities, pres-
tack migration reduces to NMO stacking. All gathers will be symmetric, so y~uz,
and hg=|~(z,-z4) |, where v is defined by equation (3.32). In terms of equation
(3.43) this means that

tsd 23(1 h2

— 1 /2 . (3.54)

VTa/a+ s4%h? 0

t,,

Ya
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So t,,=0, as one might expect.

To avoid cluttering the notation, I drop the subscript d on s, 7, and y for the

rest of this section. Then the normal equations for solving equation (3.9) become

ty At tgty totg As
toAL | T | tet, bt || AT (3.55)
where I use inner product notation to denote the various sums, e.g.,
tyt, = Z o (ts it (t i - (3.56)
ik

Here I explicitly include a set of weights « for the least-squares weighting. These nor-

mal equations (3.55) have a solution of the form

As A, At
[ Ar ] = [AT-At ] (3.57)
where
A, = 'll)' [(tr't‘r) ts - (ts't'r) tr ] (3.58)
Ar = % [ - (ts'tr) ts + (ts'ts) t1' ] (3‘59)
and
D = (ts'ts) (tr'tr) - (ts'f"r)2 . (3'60)

For flat dip and a constant slowness background y; =z,;, s;=s, and 7; =2s2;, and

the various sums are over offset A only. Then

tet, = Z oly=z4,h) t, (y=2z4,h) t {y=24,h) (3.61)
3
Z —z, h 2sh 2 824 (3.62)
3 ’ \/s2zd2+szh2 \/s2zd2+32h2
f— _z‘ ) _— .
; ! dz + h?
L/2
L [ dr o By 28 i (3.64)
~— aly=z4,h) ———— .
N I
L/2
4z; N 2
~ Z”’ b f dh oy =24,k ) — (3.65)

Zd2+ h2
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where L is the recording cable length, and N, is the number of offsets used; I
assume for simplicity that the innermost offset is small enough to be taken as zero.
The evaluation of this integral is particularly simple if one takes
oy—o(y =24,k ) = 242 + h2 This choice of weight is not completely coincidental; in
Appendix D, I show that this is exactly the weighting needed to convert the linear-
ized least squares solution I have used here into the z%-¢2 parametrization that Toldi

used. Using this substitution one gets

L/2
4z; N,
bt~ St [ dh p? (3.66)
L 0
N, L?
A Lﬁz_" . (3.67)
Similarly one gets
L/2
8N,
toty~ — [ d h* (3.68)
L 0
N, L*
~ = (3.69)
and
, L
2N, 2
t,t, A~ —2—"— [ dn (3.70)
0
~ N 2, (3.71)
and then
N2 42,2
D~ (3.72)

One also has

272x —z,)?
ts(yt):hﬂ)_ (a d)

B \/zd2+’72($a —z4 ) (3.78)

and

24

\/Zd2+72($a ~z4)? .

t{yohg) = (3.74)
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Plugging in these terms into equations (3.58) and (3.59) yields

2 2 2 12
24" Ny (1297 (z, -24 )L~
A, (yohe) = R ) (5.75)
6\/2‘d +v4(2,-24)

and
2 Ny L*[BL %207z, -2, )"]

— - (3.76)
604/ 24° (7, 24 )

A T(yﬁ’hﬁ) =

If these are substituted into equation (3.37) with a(y gh 5)=2,2+7(z, -4 ) the

result is that

(6 demdda) = 2L [tleg 2| A [vddaphida) ] @70

= ———215[:75 [zd2+72(xa 24 )" ] [ 129%(z, —24 )*-L* ] : (3.78)
d

Letting L'=L /~ and shuffling terms around yields

2
15 2(z, - 2
2 [3[ (7 4) o L
L2L' L'

-1
42(12

2
(G, Joold2) = [ 22 —24) J (3.79)

LI

which is just equation (4.18) of p.77 of Toldi (1985) with minor notational changes.

The similar expression for G, becomes

2N, 3/2
(G Jomolda) = 2L [s+%an -2 | B [vida)hoda) ] (3.80)
24 DL
3 2, .2 2 2 2
— TR [zd +v4(x, —24 )2] [ 3L “~ 20v*(z, —24) ] (3.81)
2 2
3 2(z, -74) L? [ 2z -24)
= [3-5[TJ 1+4zd2[ i (3.82)

Toldi did not present this result, but following through the same line of analysis he
used to derive G, yields exactly equation (3.82). I note that for L <<z this almost
reduces to Loinger’s (1983) result, but has a leading factor of 3/2L’ where he had
3/4. 1 believe that this result is correct and that Loinger’s equation has a minor

error.
For zero dip, the choice of a particular weighting function made it possible to

approximate all the inner product sums by simple integrals and to re-derive the sim-

ple, closed form algebraic expressions found by Toldi. However, for non-zero dip,
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closed form solutions become much too complicated to provide any hope of gaining

insight from their form, and I do not derive them here.

3.9 VISUALIZING THE OPERATOR

The operators G;, G,, and G, are functions of the four variables z,, z,, 24,
and z; describing the locations of an anomaly a and a reflecting point d. Four
dimensional pictures are difficult to comprehend. It is easiest to look at the opera-
tors either for a fixed anomaly a or for a fixed reflecting point d. The latter is the
form in which the operator is most easily applied, so I consider it first. For simpli-
city, I compute the operators against a background with constant slowness of 0.5
s/km, which is physically of the right magnitude for rocks and conveniently cancels
out scaling factors of 2s. Note that kilometers and seconds are good units to use
here, because distances, times and slownesses will ordinarily then all be of the same
magnitude. This is important because the inversion uses parameters with different
physical dimensions (slownesses, times, and distances), and the condition number of
A can be adversely affected by poor scaling of units. I discuss scaling of units

further in section 4.5.

Flat bed operators

Figure 3.6 shows the operator G, for a single fixed reflecting point d and dip
angle 6=0. The point d is located at the apex of the triangular region in the upper
picture; one can think of this as isolating for examination one point on a flat bed
through this location. The picture then displays the magnitude of change in the
migration slowness measured at the point d caused by a perturbation in the interval
slowness anywhere else. The gray background indicates no change; because of the
finite cable aperture, slowness anomalies outside the central triangular region cannot
affect the migration slowness at the point d. Within the triangular region, light
areas indicate positive changes and dark areas negative changes. To clarify this pat-
tern, the lower picture in Figure 3.6 shows a cross-section along the top of the upper

picture. Here, amplitude of G, is plotted as a function of z, with z, held constant.

The origin of the pattern of positive response for wide offset rays and negative
response for inner offsets is illustrated schematically in Figure 3.7. A negative inter-
val slowness anomaly causes an anomalously fast traveltime one offset. This travel-
time anomaly can cause either a positive or a negative change in the slowness that
describes the best fitting hyperbola. If it is at inner offset, it pulls up the peak of the

hyperbola and yields a greater slowness, but if it is at outer offsets, it pulls up the
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FIG. 3.6. The operator G, for a single fixed reflecting point d and dip angle 8=0.
The upper picture displays the magnitude of change in the migration slowness s;
measured at a point d, caused by a perturbation in the interval slowness at any
other point. The point d is located at the apex of the triangular region. The gray
background indicates no change, light areas indicate positive response, and dark
areas indicate negative response. The lower picture graphs amplitude of G, for a flat
bed, plotted as a function of lateral anomaly position z, with anomaly depth 2z, held
constant. This picture corresponds to a cross-section along the top of the upper pic-
ture. Wide offsets show a positive response, and inner offsets a negative response.
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tails, so the slowness of the best fitting hyperbola is less. The effect on the zero-offset

intercept time 7is just the opposite.

offset offset

sty
sy

FIG. 3.7. An anomalously fast traveltime can cause the stacking slowness either to
increase or decrease. The solid line in each figure shows an unperturbed moveout
hyperbola. The anomalous traveltime is represented by the asterisk. The dashed
line represents the perturbed moveout hyperbola, incorporating the anomalous trav-
eltime. . If the anomaly is at outer offsets (left picture), the stacking slowness
decreases. If the anomaly is at inner offsets (right picture), the stacking slowness
increases.

Figure 3.8 shows the operator G, for §=0. The pattern is similar to that of G,
in Figure 3.6 but this time with negative changes at wide offsets and positive changes
at inner offsets. The lower picture in Figure 3.8 again shows a cross-section along
the top of the upper picture, graphing the magnitude of G, for fixed z, and varying
z, . No figure is shown for G, because, as discussed above, it is identically zero for

flat beds.
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FIG. 3.8. The operator G, for a single fixed reflecting point d and dip angle 6=0.
The upper picture displays the magnitude of change in the migrated time location 7,
of a point d, caused by a perturbation in the interval slowness at any other point.
The point d is located at the apex of the triangular region. The gray background
indicates no change, light areas indicate positive response, and dark areas indicate
negative response. The lower picture graphs amplitude of G, for a flat bed, plotted
as a function of lateral anomaly position z, with anomaly depth z, held constant.
This picture corresponds to a cross-section along the top of the upper picture. Wide
offsets show a negative response, and inner offsets a positive response, the opposite of
the pattern for G, in Figure 3.6.
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FIG. 3.9. The operator G, for a single fixed reflecting point d and dip angle 6=30.
The upper picture displays the magnitude of change in the migration slowness s
measured at a point d, caused by a perturbation in the interval slowness at any
other point. The point d is located at the apex of the triangular region. The gray
background indicates no change, light areas indicate positive response, and dark
areas indicate negative response. The operator is similar to the flat dip operator in
Figure 3.6, but skewed by the dip. The lower picture graphs amplitude of G, for a
dipping bed, plotted as a function of lateral anomaly position z, with anomaly
depth 2z, held constant. This picture corresponds to a cross-section along the top of
the upper picture. The dashed lines in the upper picture correspond to the cross-
sections in Figure 3.10.
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FIG. 3.10. Cross sections through the G, operator of Figure 3.9. These cross-
sections are along the dashed lines in figure 3.9, parallel to the dipping reflector.

Dipping bed operators

The ray picture in Figure 3.3 for a common-reflection point gather and non-zero
dip 4 is similar to that for flat beds, but skewed by the dip. Likewise, the operator
G, for non-zero 0 is similar to the flat bed of Figure 3.6, but again skewed. This
operator G, for a 30 degree dip is shown in Figure 3.9. The pattern of positive
response at wide offsets and negative at inner offsets is again seen. Note that the
minimum of the response pattern is now not at the middle of the aperture, but

instead at the location of the normal ray.

I have emphasized that the dipping bed operator is similar to a skewed version
of the flat bed operator. However, it is not identical. The flat bed operator is sym-
metric around the vertical ray; the dipping bed operator is not exactly symmetric
around the normal ray. Figure 3.10 shows two cross-sections through the operator of
Figure 3.9, this time taken parallel to the dipping reflector rather than parallel to the
surface. The peak amplitudes at the outermost offsets are not exactly equal, as they
are for the flat bed operator cut horizontally. The amplitude of G, depends on the
reflector depth, the anomaly depth, the dip angle, and the shooting geometry. These
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factors balance each other only for the flat-bed operator. In particular, the two
cosine factors in equation (3.12) that compensate for the conversion from integration
over arc length along a ray to integration over depth are equal only for the flat dip

operator.

Figure 3.11 shows the operator G, for 6=30. Again, comparison with the flat
bed operator in Figure 3.8 shows that the dipping-bed migration slowness operator is

similar to the flat-bed stacking slowness operator, but skewed by the dip angle.

Figure 3.12 shows the operator G,. Because the dip is not zero, this operator
is no longer identically zero. As suggested by equation (3.45), G, is proportional to
G,

So far I have shown the operator for a fixed reflecting point. The conjugate
operator predicts the effect at all data points of a single anomaly point. Figure 3.13
shows an example of this conjugate G, operator for flat beds, and Figure 3.14 shows
a series of cross-sections through this operator. These cross-sections can be com-
pared with similar graphs in Figure 4.6 of Toldi (1985) or Figure 2 of Loinger (1983).
For flat beds (6=0), prestack time migration is essentially just NMO stacking, and
this operator should be the same as those used by Toldi (1985) or Loinger (1983). As
I showed in section 3.8, the migration operator I use here does indeed formally reduce
to Toldi’s stacking slowness operator for flat beds, and numerical testing confirms

that the different choice of weighting functions causes only minor discrepancies.

From the analytic solution for the flat dip operator, equation 3.79, one can
easily show that the amplitude of the G, operator is proportional to z;2/(z;-2, ).
This effect can be seen in Figure 3.13. The amplitude increases with depth z;,
except near the anomaly where the denominator term takes over to generate a singu-
larity as d approaches a. Similarly, Figure 3.15 shows the conjugate G, operator
for a single anomaly point and 30 degree dip, and Figure 3.16 shows cross-sections.
Note that the leg of the operator with peak amplitude can be skewed either updip or
downdip.

Wide offset operator

All of the pictures of operators presented so far have assumed that the inner-
most offset is zero. Nothing in the theory requires this to be true. In practice,
stacks over various offset ranges are sometimes compared for velocity analysis. Figure
3.17 shows the operator G, for an experiment in which only the outer offsets are

used. Note that the pattern of positive and negative responses is still seen, but that
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FIG. 3.11. The operator G, for a single fixed reflecting point d and dip angle §=30.
The upper picture displays the magnitude of change in the migrated time location 74
of a point d, caused by a perturbation in the interval slowness at any other point.
The point d is located at the apex of the triangular region. The gray background
indicates no change, light areas indicate positive response, and dark areas indicate
negative response. The operator is similar to the flat dip operator in Figure 3.8, but
skewed by the dip. The lower picture graphs amplitude of G, for a dipping bed,
plotted as a function of lateral anomaly position z, with anomaly depth z, held con-
stant. in Figure 3.8. This picture corresponds to a cross-section along the top of the
upper picture.
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FIG. 3.12. The operator G, for a single fixed reflecting point d and dip angle §=30.
The upper picture displays the magnitude of change in the migrated location y; of a
point d, caused by a perturbation in the interval slowness at any other point. The
point d is located at the apex of the triangular region. The gray background indi-
cates no change, light areas indicate positive response, and dark areas indicate nega-
tive response. The lower picture graphs amplitude of G, for a dipping bed, plotted
as a function of lateral anomaly position z, with anomaly depth z, held constant.
This picture corresponds to a cross-section along the top of the upper picture. The
pattern is proportional to that for G, in Figure 3.10 but opposite in sign.



-98-

midpoint (km)
0 1 2 3 4

(wxf) yidsp

FIG. 3.13. The operator G, for a single fixed anomaly point a and dip angle §=0.
This picture displays the magnitude of change in the migration slowness s caused by
a perturbation in the interval slowness at a point a, as measured at any other point.
The point a is located at the apex of the triangular region. The gray background
indicates no change, light areas indicate positive response, and dark areas indicate
negative response. The dashed lines correspond to the cross-sections in Figure 3.14.
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FIG. 3.14. The operator G, for a single fixed anomaly point a and dip angle §=0.
This picture displays the magnitude of change in the migration slowness s caused by
a perturbation in the interval slowness at a point a, as measured along flat beds at
various depths. These plots correspond to cross-sections along the dashed lines in
Figure 3.13.
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FIG. 3.15. The operator G, for a single fixed anomaly point a and dip angle §=30.
This picture displays the magnitude of change in the migration slowness s caused by
a perturbation in the interval slowness at a point a, as measured at any other point.
The point a is located at the apex of the triangular region. The gray background
indicates no change, light areas indicate positive response, and dark areas indicate
negative response. The dashed lines correspond to the cross-sections in Figure 3.16.
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FIG. 3.16. The operator G, for a single fixed anomaly point a and dip angle 6==30.
This picture displays the magnitude of change in the migration slowness s caused by
a perturbation in the interval slowness at a point a, as measured along dipping beds
at various depths. These plots correspond to cross-sections along the dashed lines in
Figure 3.15. Note that both the amplitudes and the skew change with depth of the
reflector.
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this operator is not just the zero-inner offset operator with the middle section dis-

carded. I use this operator further in section 4.4.

Variable slowness background

For simplicity, the illustrations of operators so far have assumed that they are
computed against a constant slowness background. This is not required by the
theory, and for an iterative nonlinear inversion one would want to update the back-
ground slowness model repeatedly. The behavior of the operator remains similar, but
its computation requires tracing rays, and the shape of the operator follows the cur-
vature of these rays. Figure 3.18 shows an example of the G, operator computed
for 30 degree dip and a depth-variable background slowness. Because the rays turn
upward, the effective dip is less at shallow depths, and the operator 1s closer to sym-

metric.

DMO operators

In chapter 2 I showed how prestack time-migration slownesses could be derived
from stacking slownesses using DMO-corrected slownesses as an intermediate step.
The migration slowness operator G, discussed in this chapter can also be used to
predict the DMO slownesses. DMO slownesses are, in fact, the same as migration
slownesses; the difference lies not in the G, operator, but in the affiliated mapping
between the subsurface reflecting point (z;,2z;) and the location (y;,74) in the data
where it appears. Prestack time migration can be decomposed into the sequence of
NMO, DMO, stack, and post-stack time migration. The difference between DMO
slowness analysis and prestack time migration slowness analysis is thus just the repo-
sitioning of events caused by the post-stack migration. In terms of the generalized
summation curves shown in Figure 3.4, both methods sum data over the same paths;
the DMO analysis assigns the result to the zero-offset intercept of the curve (the
unmigrated position), while the migration analysis assigns the result to the apex of
the pyramid (the migrated location). That is, if (y,7) is the migrated position (the

apex of the pyramid), the unmigrated position (¥z,, ,¢am, ) 1S given by
y —y — - tanf (3.83)
dmo 95 .
and

timo = T sech . (3.84)

Note that these equations relate two positions on the fitting pyramid, which is
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FIG. 3.17. The operator G, for a single fixed reflecting point d and dip angle =30,
with non-zero innermost offset. The upper picture displays the magnitude of change
in the migration slowness s measured at a point d, caused by a perturbation in the
interval slowness at any other point. The point d is located at the apex of the tri-
angular region. The gray background indicates no change, light areas indicate posi-
tive response, and dark areas indicate negative response. The operator is similar to
the full-cable operator in Figure 3.9, but is not just that operator with the central
section removed; both positive and negative responses will always be seen . The
lower picture graphs amplitude of G, for the operator in the upper picture, plotted
as a function of lateral anomaly position z, with anomaly depth z, held constant.
This picture corresponds to a cross-section along the top of the upper picture.
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FIG. 3.18. The operator G, for a single fixed reflecting point d and dip angle =30,
with a depth-variable background slowness. The upper picture displays the magni-
tude of change in the migration slowness s measured at a point d, caused by a per-
turbation in the interval slowness at any other point. The point d is located at the
apex of the triangular region. The gray background indicates no change, light areas
indicate positive response, and dark areas indicate negative response. The operator is
similar to the constant slowness operator in Figure 3.9, but curved because of ray
bending. The lower picture graphs amplitude of G, for a dipping bed, plotted as a
function of lateral anomaly position z, with anomaly depth z, held constant. This
picture corresponds to a cross-section along the top of the upper picture.
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always constant-slowness, and do not necessarily describe the relation between the
true migrated and unmigrated positions. If the slowness analysis algorithm attempts
to maximize the energy in the resulting image, only the summation over offset A con-
tributes; the repositioning caused by the zero-offset migration focuses the image, but

does not change the total energy in the image as a whole.

Against a constant slowness background, the mapping from model position to
data position for the migration slowness analysis is just a relabeling of the vertical
axis: (yq,74) = (24,2827). The mapping for the DMO slowness analysis must undo
the zero-offset migration, and so is dip-dependent: (y;,t;) = (4 —24 tané, 2sz, sect).
Note that for the DMO analysis, I use ¢ to indicate unmigrated time instead of 7
which I have used previously for migrated time. For a variable slowness background,
the map from physical subsurface reflector location to data position requires ray trac-
ing. For the migrated data, the map requires tracing ¢mage rays; for the unmigrated

DMO analysis, it is normal rays that are needed (Hubral, 1977).

In Figure 3.19 I show the expected DMO slowness changes caused by a pertur-
bation in the interval slowness at one point, as seen on 30 degree dipping beds. All
locations are now given not in terms of z and z, but as the corresponding values of
y and ¢. This picture is a stretched version of 3.15; the underlying operator G, 1is
the same, because the same family of rays (common reflection point gathers) is being
used. Figure 3.20 shows cross-sections through the DMO operator of Figure 3.19.
The cross-sections are taken with an apparent angle less than the true dip angle of
30 degrees, because the vertical axis of Figure 3.19 is unmigrated time instead of

depth.

3.11 CONCLUSIONS

Perturbations In interval slownesses can be related to the changes that they
cause in measurable migration slownesses by a linear operator. This operator can be
formulated as a filtered version of conventional tomographic back-projection. It can
be implemented stably using singular value decomposition to solve for the filtering
stage by inverting double-square-root traveltime equations. For flat beds this opera-
tor reduces both theoretically and numerically to Toldi’s stacking slowness operator.
For dipping beds, the operator still resembles the flat bed one, but is skewed by the
effect of the dip. The same operator can also be used to relate changes in interval
slowness to changes in DMO-corrected stacking slowness; the only difference is that

velocities are assigned to unmigrated, rather than migrated, positions.



-106-

midpoint (km)
2 3 4 5

(s) swny

FIG. 3.19. The DMO slowness operator for a single fixed anomaly point a and dip
angle §=30. This picture displays the magnitude of change in the DMO slowness s
caused by a perturbation in the interval slowness at a point a, as measured at any
other point. The point a is located at the apex of the triangular region. The gray
background indicates no change, light areas indicate positive response, and dark
areas indicate negative response. The dashed lines correspond to the cross-sections in
Figure 3.20.
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FIG. 3.20. The DMO slowness operator for a single fixed anomaly point a and dip
angle §=30. This picture displays the magnitude of change in the DMO slowness s
caused by a perturbation in the interval slowness at a point a, as measured along
dipping beds at various depths. These plots correspond to cross-sections along the
dashed lines in Figure 3.19. Note that both the amplitudes and the skew change
with depth of the reflector.



