Chapter 2
Dip moveout and migration

in velocity space

2.1 INTRODUCTION

Accurate estimates of the velocity at which acoustic waves propagate under-
ground are critical for imaging and interpreting seismic reflection data. Tradition-
ally, a distinction is made between the steps of estimating velocity and of imaging.
Velocity analysis ordinarily is done first, because a velocity estimate is required for
the subsequent imaging processes of stacking, migration, or prestack migration.
Unfortunately, the imaging algorithms are often better than the knowledge of veloci-
ties; errors in migration techniques can be overshadowed by uncertainties in the velo-
city field. Moreover, in surveys over complex geologic structure, many conventional
methods for estimating velocity will yield inaccurate results. Stacking velocities will
not be the same as migration velocities, and neither one will necessarily be readily
related to the real acoustic velocities. The processes of velocity analysis and imaging
do not then separate so cleanly into two distinct steps, since knowledge of the struc-

ture is also needed for accurate velocity analysis.

Most conventional processing of reflection data uses traces sorted into
common-midpoint (CMP) gathers in major part because the changes in normal
moveout (NMO) of reflection events with offset allow estimation of velocities. In a
medium of a single, constant velocity v the traveltimes corresponding to the primary

reflection from a planar horizontal interface will satisfy the hyperbolic NMO equation
t2=tg + 4h?/v?, (2.1)

where ¢ is the two-way traveltime, h is the half-offset, that is, one half the distance
between the shot and geophone, and ¢, is the two-way traveltime for zero offset, or
coincident shot and geophone. Note that I use velocity here and throughout to mean
the compressional wave velocity, estimated from primary reflections. I do not

attempt to consider the effects of mode conversions, multiples, attenuation, or
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anisotropy, because these are usually most easily studied only after a good initial

estimate of compressional wave velocities is available.

For stratified media equation (2.1) will no longer be exact, but it has long been
known that equation (2.1) may still be used for velocity estimation if the velocity
parameter v is interpreted as a root-mean-square (rms) average of the overlying
interval velocities. This identification is not exact, but it often provides an accept-

able estimate (Al-Chalabi, 1974, 1979; Hubral and Krey, 1980; Cordier, 1985).

The straightforward application of hyperbolic NMO to estimate velocity may
break down either when the velocity varies laterally or when the reflecting horizons
are not horizontal. In the former case the moveout will deviate increasingly from
hyperbolic with larger lateral velocity variation. I return to discuss this case later in
this chapter, but will be concerned for the most part here with the effects of geologic
structure. If the reflectors are dipping, the moveout will remain hyperbolic, but the
NMO velocity that must be used in equation (2.1) will be related to the flat bed
NMO velocity by

v
= 2.2
Yo cosf ’ (2:2)

where 6 is the reflector dip (Dix, 1955; Levin, 1971). Processing algorithms that
attempt to correct for this effect are known by a variety of names; I will refer to
them generically as dip moveout (DMO) methods (e.g., Judson et al., 1978; Yilmaz
and Claerbout, 1980; Deregowski and Rocca, 1981; Bolondi et al., 1982; Hale, 1984).
Deregowski (1986) provides a good summary of DMO techniques with further refer-

ences.

In principle DMO does not require a detailed knowledge of velocities. Unfor-
tunately, as Hale (1984) showed, DMO is properly applied after NMO. For velocity
analysis, one would like to be able to apply DMO before NMO, because NMO
requires a commitment to a velocity function. In this chapter I introduce a new
DMO algorithm that sidesteps this problem. In this method DMO is implemented on
multiple constant-velocity stacks, and velocity analysis is postponed until after both
NMO and DMO.

The velocities derived from a stacking velocity analysis often are not suitable
for migration. One problem, as mentioned above, is the effect of dip on the meas-
ured velocity. A second problem is that of spatial mis-positioning of the velocity
information. Stacking-velocity analysis gives one information only where there are

reflectors, and tells one about the velocities above those reflectors. However,
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unmigrated reflectors can appear to be located a substantial distance both laterally
and vertically from their correct, migrated positions. For migration one needs velo-
city information in migrated time (or better still, in depth). (See Hatton et al., 1986
for a discussion of this point.) The problem arises of needing to know reflector posi-
tions before doing velocity analysis, but needing to know velocities to migrate
reflectors to their correct positions. In this chapter I show how migration can be done
naturally on constant-velocity stacks. As with DMO, choice of a velocity function
can be postponed until after reflector imaging, so the velocities derived are naturally

in migrated time.

The algorithms developed here are derived first for a homogeneous medium.
The extension to a stratified medium is straightforward and involves the same
approximations used when doing conventional NMO stacking, and Kirchhoff migra-
tion: NMO and diffraction curves must be approximately hyperbolic. This assump-
tion of hyperbolicity breaks down when lateral velocity variation becomes large, but
I show with field data examples that the methods presented here remain useful well

beyond the strict assumption of lateral homogeneity.

2.2 IMAGING IN VELOCITY SPACE

What is a velocity space?

Seismic reflection data records a wave field (either pressure or particle velocity)
as a function of time and position. By a “velocity space’” I mean the result of any
transformation of the seismic data that makes them a function of velocity.
Specifically, I begin with CMP sorted data ¢ (y,h ,t), where ¢ is the wave field, y is
midpoint, & is half-offset, and ¢ is time. Most stacking-velocity analysis proceeds by
trial stacking at a range of velocities, the principle being that the correct velocity will
be the one that produces the best image, or maximizes some statistic such as sem-
blance (Neidell and Taner, 1971). If all the data are stacked this way, the resulting
data ¢(y,v,t) depend on the velocity v instead of on the offset h. NMO stacking
constitutes a linear operator that transforms the original data into a particular velo-

city space, namely that composed of constant-velocity stacks.

The multiple-velocity-stack operator is not the only one that can be used to
produce a velocity space. Chun and Jacewitz (1978) suggested migrating a single
stacked section at a range of velocities, and Gray (1985) proposed migrating
velocity-analysis semblance panels using their stacking velocities. Both of these

methods produce what I would term here a velocity space, but neither of them
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confronts the differences between stacking velocities and migration velocities. Shur-
tleff (1984) and Tieman (1984) generated another velocity space by performing
constant-velocity prestack migration at a range of velocities. In the section on
constant-velocity prestack migration I compare the algorithms proposed here with
Shurtleff’s method, and show that velocity-space DMO and migration can be inter-
preted as effecting a transformation from one velocity space (constant-velocity

stacks) to another (constant-velocity prestack migrations).

The word “velocity” as used here refers to a parameter in a transformation
operator such as NMO stacking or prestack migration. For data recorded from a
medium with a single constant velocity, this velocity parameter in the operator will
coincide in value with the medium velocity, and hence the choice of terminology is
natural. This simple identification no longer holds for inhomogeneous media. The
velocity parameter then is an rms average of the overlying medium velocities, or
some more complicated function of the physical velocities. However, I retain the same

terminology in accord with common usage.

DMO on constant-velocity stacks

For clarity, I consider first a simple example of synthetic data. Two reflectors
are modeled, one flat and one dipping 45°, in a medium with a constant velocity of
2 km/s. For this example, I simply computed traveltimes and convolved with an
unvarying wavelet; no effort was made to include realistic diffractive or waveform
effects. Figure 2.1a shows a zero offset section of the resulting data. Similar synthet-

ics were also computed for 24 offsets up to A =1.38 km.

Figure 2.2a shows the result of applying NMO stacking using the medium velo-
city of 2 km/s. The flat bed is stacked correctly, but the dipping bed is severely
attenuated, because the apparent stacking velocity needed to image it is biased
upward by the dip cosine correction of equation (2.2). Figure 2.2b shows the stack
using a velocity of 2.83 km/s, which is suitable for the 45° dipping horizon. This
time, the dipping bed images well, but the flat bed is attenuated.

This dip filtering property of NMO stacking is well known. One approach that
1s used to cope with it is to stack over a range of velocities, and then to sum the
various stacks. However, what is really desired is to include only the flat event from
the low velocity (2 km/s) stack and the dipping event from the high velocity (2.83
km/s) stack, and to discard the other events that are incorrectly stacked. This sug-
gests that one should decompose each stack using dip filters and select only the

appropriate events. This dip decomposition could be done directly on the data using
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FIG. 2.1. (a) Synthetic zero-offset data showing one flat bed and one bed dipping
45°. Similar data were modeled for a range of offsets up to 1.38 km using a velocity
of 2 km/s. Only the kinematics of the bed reflection are modeled, and no diffractive
effects are incorporated. (b) The 2 km/s section after applying the velocity-space
DMO algorithm to the synthetic data.

slant stacks (Schultz and Claerbout, 1978). Instead, I Fourier transform over the
midpoint and time axes to effect a similar decomposition into plane-wave components
corresponding to the different dips. If k, is the midpoint wavenumber, that is, the
Fourier variable dual to the midpoint y, and w is similarly the temporal frequency,
the dip information will now be contained in the ratio k, /w. If v is the medium

velocity, the dip 6 of a reflector will be given (e.g., Claerbout, 1984) by

vk
LA 2.3
” (2.3)

sinf ==

The factor of two enters because two-way traveltimes are used.

Using equation (2.3) one could thus extract from the 2 km/s stack of Figure
2.2a the flat event (k, =0), and from the 2.83 km/s stack of Figure 2.2b the 45° dip-
ping event (k, =w/V2). The rest of each Fourier transformed stack can be zeroed
out and the stacks inverse transformed and summed together. The resulting stack is

shown in Figure 2.1b. The flat and dipping events now stack equally well, as
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FIG. 2.2. (a) 2 km/s stack of the synthetic data of Figure 2.1a. The flat bed stacks
well, but the dipping bed is weak. (b) 2.84 km/s stack of the synthetic data of Fig-
ure 2.1a. The dipping bed stacks better at this higher velocity, but the flat bed is
now weak.

predicted.

The above description appears to require that the medium velocity and the dips
of all important reflectors are somehow known in advance. In fact, neither needs to
be known; all velocities and dips can be treated simultaneously. Combining equa-
tions (2.2) and (2.3) gives an expression relating the medium velocity v to the velo-

city vy at which a bed with dip @ stacks best:

2 272
vg=v [1— ? Y J : (2.4)

40?
Equivalently, equation (2.4) may be solved for v in terms of v, to give

v k2 J'l/ :

(2.5)

v———vg[l—l— i
w

If one stacks over a range of velocities and then Fourier transforms all the stacks,

equation (2.5) may be used to apply the DMO correction simultaneously for all dips
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and all possible velocities. The combination of multiple velocity stacking and two-
dimensional Fourier transformation yields a data space ¢ (k, ,w,v) that decomposes
the data in terms of both velocity and dip. In this space the DMO correction takes
the simple form, suggested by equation (2.5), of a regridding or one-to-one mapping
of the velocity axis for each (k, ,w) pair. The result of this velocity correction after
inverse Fourier transformation is a stack at the correct medium velocity in which
events of all dips stack equally well. This is how Figure 2.1b was actually generated;
60 constant-velocity stacks were generated spanning a range from 2 km/s to 3.18

km /s, equation (2.5) was applied, and the new 2 km/s stack was selected for display.

Equivalence of velocity-space DMO with Hale’s algorithm

The formulation presented here of DMO as a dip-dependent velocity correction
applied to constant-velocity stacks is easily implemented, but its relation to other
DMO methods may not be readily apparent. In fact, it is formally equivalent to the
DMO method of Hale (1984). That is, if one performs NMO at a range of velocities,
applies Hale’s algorithm to each moveout-corrected section, and then stacks the data,
the resulting suite of DMO-corrected stacks will be identical to the ones generated by
the velocity space algorithm. The equivalence can be seen if one considers the action
of each algorithm on dip-decomposed data. The velocity-space algorithm can be
summarized by the following sequence of steps: NMO stacking over a range of veloci-
ties, dip decomposition of the stacks by two-dimensional Fourier transformation,
correction of the velocities by shifting data between stacks, and inverse Fourier
transformation. Jakubowicz (1984) showed that the Hale algorithm can also be
impleménted by dip-dependent NMO combined with dip filtering. If the two algo-
rithms are written this way, in terms of their actions on each dip component of the
data, the formal difference between the methods reduces to an interchange of order
of an integral over offset (stacking) and a Fourier transform over time. The two
steps commute, so the methods are formally equivalent. I provide a detailed deriva-

tion of this equivalence in Appendix A.

The principal difference between the Hale-Jakubowicz DMO algorithm and the
velocity-space algorithm lies in whether the dip correction is done before or after
stacking. If the velocity function is known, it is computationally cheaper to apply
NMO followed by a DMO algorithm such as Hale’s, and then stack the data. How-
ever, by implementing the dip corrections after multiple-velocity stacking, the
velocity-space algorithm postpones velocity analysis until DMO, and requires no prior

knowledge of the velocity function.
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Migration of DMO-corrected constant-velocity stacks

After the application of the velocity-space DMO correction, the stack at the
correct medium velocity will contain all dips, and will closely resemble a zero-offset
section, as shown in Figures 2.1a and 2.1b. In particular, diffractions, which contain
a wide range of dips, will be stacked correctly. This suggests that it is appropriate
to apply a zero-offset migration algorithm to this section. Figure 2.3a shows the
result of migrating the synthetic data of Figure 2.2b using a velocity of 2 km/s; the

initial model of two reflectors is successfully reconstructed.
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FIG. 2.3. (a) 2 km/s stack of the synthetic data of Figure 2.1a, after DMO and
migration. The wavelet is zero-phase, as it is in the zero-offset data. (b) 2 km/s
prestack Stolt migration of the synthetic data of Figure 2.1a. The wavelet differs in
phase by 45° from the original data.

In practice, one would not know in advance which velocity stack represents the
correct medium velocity. However, one can migrate all the DMO-corrected stacks,
each at the dip-corrected, or flat-bed, velocity. This can be easily and economically
incorporated in the velocity-space DMO algorithm by applying the constant-velocity

migration algorithm of Stolt (1978) to the stacks, before inverse Fourier
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transformation. To do this, one simply applies to each (k,,v) trace the mapping

from unmigrated frequency w to migrated frequency &, given by

2 2 )1/
k,:w[l— U4wg ] , (2.6)

and then weights the data by the Jacobian of this transformation, dw/0k =k ,/w.
Note the formal similarity of equation (2.6) to the DMO equation (2.5); in this velo-
city space, DMO comprises a regridding of the velocity axis and migration a similar
regridding of the frequency axis. Since the data is already doubly Fourier
transformed, the additional computational cost of incorporating the migration step is

minimal.

Constant-velocity prestack migration

Shurtleff (1984) presented a method of imaging and velocity analysis that used
the constant-velocity prestack f-k domain migration algorithm of Stolt (1978) to
create a velocity space different from the space of constant-velocity stacks discussed
so far in this chapter. In this approach, the data are Fourier transformed over offset
h as well as over midpoint y and time ¢, and directly mapped to a migrated image
using the change of variable from unmigrated frequency w to migrated frequency £,
given by

1/2 1/2
k,zﬁ[[l—w] +[1—M] } (2.7)

2 40° 4w

This mapping is a generalization of equation (2.6) for non-zero offset data.

Hale (1983) proved that, for constant velocity, the sequence of NMO, DMO,
stack, and zero-offset migration is kinematically identical to f-k prestack migration.
Since the velocity-space DMO is equivalent to Hale’s method, one would expect the
result of velocity-space DMO and migration to be extremely similar to that produced

using Shurtleff’s approach.
Figure 2.3b shows the result of applying Stolt’s (1978) prestack f-k migration

algorithm to the same data used to produce Figure 2.3a. The two figures, as
predicted, are strikingly similar. The kinematics are identical, and the only
significant difference is the phase of the wavelets associated with the reflection
events. The velocity-space DMO and migration result preserves the zero-phase char-
acter of the initial data, whereas the prestack migration result is phase rotated by

45° (r/4). This phase difference between the DMO result and the prestack
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migration is predicted in Hale’s (1983) asymptotic analysis of DMO. Deregowski and
Brown (1983) provide an extensive discussion of the causes of such phase shifts in

migration and diffraction.

The close similarity shown here between the result of prestack f-k migration as
used by Shurtleff and that of the velocity-space DMO and migration method corro-
borates the results shown by Morley et al. (1985). Because the results of these two
methods can be brought into agreement by a simple phase rotation, I will henceforth
treat the results as fundamentally equivalent. The resulting velocity spaces can be
used interchangeably for velocity analysis and the extensions to variable velocity are
the same. When I wish to distinguish between the approaches, I will refer to them
specifically as CVS (constant-velocity-stack) and CVPM (constant-velocity-prestack-

migration) methods, respectively.

Morley et al. (1985) reported that the CVS method took 1.5 to 1.7 times as
much computer time as the CVPM method. The major computational cost of the
CVS algorithm ordinarily lies in the generation of the constant-velocity stacks. For
computers with vector-arithmetic capabilities and large core memories, this cost can
be reduced greatly if constant-offset sections are transposed in core and NMO is per-
formed for many midpoints simultaneously. Also, high accuracy can be retained at
low cost for the many interpolations required by repeated NMO if the data are ini-
tially oversampled along the time axis. In these ways, I was able to make the CVS
algorithm run as fast as my implementation of the CVPM method. However, I
attempted no rigorous comparison of computational costs; I believe both methods are

computationally reasonable to implement on current computers.

The CVPM method has the advantage that it can be applied directly to shot
profiles, saving the cost of a sort into CMP order. The CVPM method is also more
appropriate when a small velocity range is to be sampled finely, because, unlike the
CVS method, it does not always require processing all velocities if only a small range
is to be examined. The CVS method has the countervailing advantage of offering
CMP stacks and DMO-enhanced stacks as intermediate output. The latter method
is also more flexible and robust in handling irregularly sampled data, because it does
not require the regular sampling in offset that is needed for the CVPM method, and
is less sensitive to aliasing and truncation along the offset axis. Approaches to
ameliorating some of these potential problems with the CVPM method are discussed
further by Li et al. (1987). (The ability to handle data irregularly sampled in offset
is also an advantage of CVS over many other DMO algorithms that require genera-

tion of constant-offset sections.)
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2.3 ALLOWING FOR SPATIALLY VARYING VELOCITY

So far I have treated only the idealized case in which the medium velocity is
constant. More generally, the velocity-space methods will work well as long as NMO
and diffraction curves remain approximately hyperbolic, so that NMO stacking
(hyperbolic NMO summation) and Kirchhoff time migration (hyperbolic diffraction
summation) can produce a coherent image. Note, however, that both the CVS and
CVPM methods are time migration methods; for data with significant lateral velocity
variation a coherent image may be produced, but depth migration is really needed to

position events correctly (Hubral, 1977; Larner et al., 1981; Hatton et al., 1981).

When would velocity variations be so large that these methods fail entirely?
Qualitatively, the answer is, when no particular choice of velocity produces an
optimal image, or when several velocities yield equally good (or poor!) images. One
has to be able to make some judgement about which hyperbola fits the data best; if
the data is radically nonhyperbolic, no such decision is possible. Of course, I have not
yet specified a criterion for “best” fit. For stacking-velocity analysis, criteria com-
monly used are maximum energy or maximum semblance in the resulting stack. For
evaluating migration, one might wish to use entropy to measure focusing (De Vries
and Berkhout, 1984; Harlan et al., 1984). I return to these questions in the section
on the effects of lateral velocity variation, and again in the section on velocity

analysis.

Vertical velocity variation

For vertically stratified media, the NMO equation (2.1) is no longer exact, but
standard processing of seismic data still uses hyperbolic moveout for stacking, with
the velocity parameter in equation (2.1) interpreted as some function of the overlying
interval velocities, most commonly an rms average. Thus, at each depth, the overly-
ing layers are treated as though their effects could be simulated by a hypothetical

replacement medium with a constant velocity.

What will the implications of velocity variation be for the velocity-space DMO
and migration algorithms? Consider the collection of constant-velocity stacks
q(y,v,t), as constituting a ‘“cube” of data, as in Figure 2.4. At each midpoint y,
the velocity as a function of the zero-offset traveltime ¢ describes a curve in the
(v,t) plane. In each stack, there will exist a small range of ¢ for which the velocity
is correct; earlier or later in the data, the velocity will be too low or too high. Using
the idea of an effective constant velocity replacement medium for each stack, how-

ever, one can use the velocity-space DMO and migration algorithms just as for
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constant velocity. The portion of each stack for which the velocity is reasonable will

image well; the rest of the stack is discarded when the final image is selected.

FIG. 2.4. A set of constant-velocity images forms a data cube with axes of midpoint
y, time ¢, and velocity v. An image corresponding to a variable-velocity field can
be created by interpolation between the constant velocity images. Schematically,
this interpolation “‘slices” through the data cube along the specified velocity func-

tion, as suggested in this figure.

The selection of an image now consists of more than simply choosing the single
correct velocity stack. The extraction of the image can be visualized as a process of
“slicing” the data cube along the path defined by the velocity function, as shown
schematically in Figure 2.4. In practice, this means extracting portions of the final
image from each stack, and interpolating between stacks where the velocity falls

between one of those used in generating the stacks.

As an example, Figure 2.5a shows a zero-offset section of the same reflector
model as in Figures 2.1 through 2.3, but now using a velocity that increases linearly
with depth (v = 1.5 4+ 0.5z ) instead of a constant 2 km/s velocity. 200 stacks were
created from these data, sampled evenly in velocity from 1.34 km/s to 5.32 km/s.
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The data, like that in the constant velocity example, were created by tracing rays to
compute traveltimes, and convolving with an invariant zero-phase wavelet. Figure
2.5b shows this section after DMO, extracted with a depth-variable velocity function,
and Figure 2.6 shows the result extracted after migration. Despite the substantial

vertical velocity gradient, the CVS algorithm images the data well.
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FIG. 2.5. (a) Synthetic zero-offset data using a velocity function v (z)=1.540.5z
km/s. The reflector model is the same as used in Figure 2.1a. (b) The v(z) data

after applying the velocity-space DMO algorithm. This section was created using the
rms average of the interval velocities.

The velocity function used for producing Figures 2.7 and 2.6 was the rms aver-
age of the interval velocities. I discuss in section 2.5 the accuracy of this approxima-

tion.
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FIG. 2.6. The v (z) data after applying the velocity-space DMO and migration algo-
rithm. This section was created using the rms average of the interval velocities. The
results are comparable to the image from constant-velocity data in Figure 2.3a.

Lateral velocity variation

The velocity-space algorithms can also be applied when the velocity varies
laterally, provided this variation is not too large. The same concept of an effective
homogeneous replacement medium can be used, although now the replacement velo-
city will also vary laterally. The extraction of an image by interpolation is also the

same; the velocity function used will now differ from midpoint to midpoint.

Lateral velocity variation does introduce one new and subtle complication. For
constant velocity, both NMO and diffraction curves are hyperbolic, and have the
same velocity. For vertically stratified velocity, both curves deviate from hyperbolas,
but the best fitting effective velocity will remain the same for both, since the devia-
tions are identical. For a laterally varying velocity, the effective velocities for stack-
ing and for zero-offset migration can differ. Fortunately, these differences are usually

small.
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2.4 FIELD DATA EXAMPLES

I illustrate the application of velocity-space DMO and migration on two field
data sets. Both are from marine surveys, but they differ in structural style, tectonic
setting, and degree of lateral velocity variation present. The first is from the Gulf of
Mexico, and is dominated by growth faulting associated with a nearby salt dome.

The second shows contorted sediments from off the coast of southern California.

Gulf Coast data example

Figure 2.7 shows a portion of a data set collected in the Gulf of Mexico. These
data are from the same survey line used for illustration by Hale (1983, 1984) and by
Rothman et al. (1985). To process these data 101 constant-velocity stacks were
created. These stacks were sampled evenly in squared slowness (1/02) with an inter-
val of 0.0046 s2/km? covering a range from 0 s2/km? (infinite velocity) to 0.46s%/km?®
(1.47 km/s). This choice of sampling strategy is explained in section 2.6. The
stacked section in Figure 2.7 was extracted by interpolation between these stacks.
The CVS algorithm was then applied to these data, using DMO to resample from
slowness squared to slowness, yielding 101 stacks covering a range from 0.333 s/km
(3.0 km/s) to 0.677 s/km (1.48 km/s) in steps of 0.00344 s/km. Figure 2.8 shows the
section extracted from the stacks after DMO, and Figure 2.9 shows the section
extracted after both DMO and migration. The ability of DMO to counteract the dip
selectivity of stacking is exemplified by the well-imaged fault-plane reflections in Fig-
ure 2.8. The diffraction tails from the bed truncations at the fault are also more
prominent after DMO. In Figure 2.9, migration collapses these diffractions, as
expected, and shifts the fault-plane reflections to their correct locations, aligned with
the truncations in the flat beds. Some of the fault plane reflections do not align this

way; Hale (1983) suggests that this is caused by 3-D effects, and I would concur.

To illuminate the action of the velocity-space algorithm, I examine in detail a
small window of data from the left side of Figure 2.7. Figure 2.10a shows a
constant-velocity stack of this window at a velocity of 2.20 km/s. This velocity is an
appropriate stacking velocity for the flat beds at 2.2 seconds, but the steeply dipping
fault-plane reflection is barely visible. Figure 2.10b shows a similar stack, but using
a velocity of 2.69 km/s. Now the fault plane reflection is apparent, but the flat beds
are attenuated. After application of velocity-space DMO, both the dipping and flat
reflectors in the region around 2 seconds stack well using a velocity of 2.20 km/s
(Figure 2.11a). Figure 2.11b shows the 2.20 km/s DMO stack of Figure 2.11a after

migration using the same velocity.
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FIG. 2.7. Portion of a data set from the U.S. Gulf coast, extracted from a suite of

101 constant-velocity stacks.
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FIG. 2.8. Portion of a data set from the U.S. Gulf coast, extracted from a suite of
101 constant-velocity stacks after DMO correction. The fault-plane reflections and
the diffraction tails from bed truncations are more evident than in Figure 2.7.
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FIG. 2.10. (a) Constant-velocity stack of Gulf coast data at 2.20 km/s.
stack well, but the fault-plane reflection is missing.
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Flat beds
(b) Constant-velocity stack of

Gulf coast data at 2.69 km/s. The fault-plane reflection is apparent at 2.2 seconds,

but the flat beds are attenuated.

The velocity function used for stacking the Gulf coast data is shown in Figure

2.12. Because the velocity is only weakly varying laterally, and the reflectors have

only shallow dip, the same velocity function is also used for migration. These data

are used here to exemplify the action of the velocity-space algorithm, not because

they pose an unusual velocity analysis problem. Note that the velocity contours gen-

erally trend down toward the left of Figure 2.12, although the reflecting beds dip

upward toward the left. This is an example of how the long-wavelength background

velocity model can be partially decoupled from the short wavelength reflectivity

image.
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FIG. 2.11. (a) Constant-velocity stack of Gulf coast data at 2.20 km/s after DMO
correction. Both the flat beds and the dipping fault-plane reflection stack well now.
(b) Constant-velocity stack of Gulf coast data at 2.20 km/s after DMO correction
and migration. The diffraction tails are collapsed, and the dipping fault-plane
reflection aligns better with the bed truncations.

Offshore California data example

Figure 2.13 shows a portion of a data set from off the coast of southern Califor-
nia. This image is extracted from a suite of 61 stacks. Figure 2.14 shows the appli-
cation of velocity-space DMO to these data, and Figure 2.15 shows the migrated
result. Because of the complicated folding and faulting of the sediments, interpreta-
tion of these data is greatly simplified by migration. The structural complication,
combined with a dipping sea floor, means that the velocity field is not laterally
invariant, but the velocity-space algorithm has nonetheless produced a focused image
in most places. No deconvolution or multiple suppression was applied to these data,
which has two side effects. The first is that a strong sea floor multiple remains visi-
ble cutting across the geologic structure. The second is that the measured velocities

are systematically too low; the sea floor reflection has an apparent velocity of about
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FIG. 2.12. Velocity function used for stacking and migrating the Gulf coast data of
Figures 2.7 to 2.11. Contours are in slowness, with an increment of 0.025 s/km.

1.46 km/s, which is lower than that of water. The energy source for this survey was
a pair of water guns, with a weak first event followed by a second strong, sharp
pulse. This time lag makes all moveout velocities appear low; it can be corrected by

proper deconvolution, or by time-shifting the data before velocity analysis.

Figure 2.16 shows the velocity function used for extracting the stacked section
on Figure 2.13. For comparison, Figure 2.17 shows the velocity function used for
making the migrated section in Figure 2.15. In both cases, what is plotted is not the
velocity but its reciprocal, the slowness, for reasons discussed further in section 2.6.
Note that for this example, the velocity contours follow the general dip of the beds,
and that the velocity contours steepen during migration just as the dipping beds do.
In both figures, there is little control on the velocities below about 2.3 seconds
because there are few coherent reflections, so the velocity contours shown there mean

little. In the next section, I examine some portions of these data in greater detail.
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FIG. 2.16. Stacking velocity function for the offshore California data set. This velo-
city function was used to produce Figure 2.13. Contours are in slowness, with an
increment of 0.05 s/km.

2.5 VELOCITY ANALYSIS USING VELOCITY-SPACE IMAGING

The velocity-space processing algorithms unify imaging and velocity analysis, so
that DMO and migration are done before any commitment to a velocity function.
Velocity analysis is performed on data that is already partially or fully imaged; the
large discrepancies between stacking velocities and migration velocities that can arise
because of dip are suppressed. Moreover, extraction of an image by interpolation is
computationally trivial, so a wide variety of velocity functions can be tested, and the

stacked or migrated images corresponding to each can be examined and compared.

DMO-corrected or migrated stacks can be used for velocity analysis just like
constant-velocity stacks. Figure 2.18a shows the stacked traces for a range of veloci-
ties at the midpoint 3.35 km from the left end of the Gulf coast line shown in Fig-
ures 2.7 to 2.11. The velocity trend is clearly defined. To make the velocities easier
to pick, the data values are squared and the resulting energy values are smoothed
over a short time window and contoured for plotting. Such a plot derived from Fig-

ure 2.18a is shown in Figure 2.18b.
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FIG. 2.17. Migration velocity function for the offshore California data set. This
velocity function was used to produce Figure 2.15. Contours are in slowness, with an
increment of 0.05 s/km.

Similar analyses may be produced equally readily for the DMO-corrected data
(Figure 2.19) and for the DMO-corrected and migrated data (Figure 2.20). In each of
these ﬁgures the flat beds define a clear velocity function. In Figure 2.18 a high velo-
city feature is visible at 2.2 seconds, separated from the dominant velocity trend.
This event is caused by the dipping fault plane visible in Figure 2.10b. The applica-
tion of DMO in Figure 2.19 moves this energy back to the velocity trend defined by
the flat beds. In Figure 2.20 this fault plane energy is no longer visible; migration
shifts it laterally, as seen in Figure 2.12b, so that it no longer contributes to the velo-

city analysis for this midpoint.

Velocity analysis in variable-velocity media

In a layered medium, the stacking velocities of flat beds will be close to the rms
average of the interval velocities. For velocity that is a function of depth only, the
DMO and migration velocities will also be close to the rms velocities, even for dip-

ping beds. Figure 2.21 shows velocity analysis panels for stacking, DMO, and
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FIG. 2.18. (a) Stacked traces for a range of squared slownesses at the midpoint 3.35
km from the left side of Figure 2.7. (b) Contour plot of energy in Figure 2.18a. The
stacking velocity function is easy to pick by connecting the energy peaks. The peak
at 2.2 seconds at a higher velocity then the main trend is caused by a dipping fault
plane reflection.

migration of the synthetic data shown in Figures 2.5 and 2.6. The velocity analyses
are all at the point 2.2 km from the left edge. Overlaid on each panel is the rms
velocity function. The flat bed at 2.05 seconds lies on the rms curve in all the
panels. The 45° dipping bed yields a stacking velocity much too high, as expected.
DMO correction gives a velocity slightly lower than the rms curve, and migration
slightly higher.

Why are the DMO and migration velocities not exactly the same as the flat bed

(rms) velocities? The velocity space algorithm can remove the large bias caused by



-40-

slowness (s/km)
0.4 0.6 0.4 0.6

slowness (s/km)

i
oty

7 ’(§?‘v’§§}€; X
.
.

.

it
ﬂg im{‘
.

.
-

FIG. 2.19. (a) Stacked and DMO-corrected traces for a range of slownesses at the
same midpoint as in Figure 2.18. (b) Contour plot of energy in Figure 2.19a. The
fault plane reflection at 2.2 seconds now has the same stacking slowness as the flat
beds.

structure, but it can not correct exactly for ray curvature effects. The dipping bed
rays travel at shallower average angles than the flat bed ones, and so are more
affected by ray curvature. The apparent dip (d¢ /dz ) is measured from surface data,
and ray curvature causes the apparent emergent angle to differ from that in a con-
stant velocity medium. Also, the migration velocity will be higher than the DMO
velocity because migration moves the velocity information carried by a reflector seg-
ment updip; the unmigrated velocity information belongs higher up, in a zone of
lower velocity. None of these effects is usually large (Hale,1983), and the DMO-

corrected or migrated velocity functions are far closer to being single valued than are
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FIG. 2.20. (a) Stacked, DMO-corrected, and migrated traces for a range of
slownesses at the same midpoint as in Figures 2.18 and 2.19. (b) Contour plot of
energy in Figure 2.20a. The fault plane reflection at 2.2 seconds is moved laterally
by migration so that it no longer is visible in this velocity analysis.

the uncorrected stacking velocities.

Coherence measures for stacking

One practical problem with velocity analyses based on energy is the dominance
of strong reflectors over weak, but equally coherent, events. A standard method for
dealing with this problem is to replace measurement of energy in the stack with
measurement of semblance. Let the NMO-corrected data for a particular midpoint be

written as ¢;; =¢ (¢;, h;). Then the energy in the stack at that midpoint is given by
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FIG. 2.21. (a) Stacking velocity analysis for data of figure 2.5, at the 2.2 km mid-
point. Solid curve is the rms average of the interval velocities. Contour lines indi-
cate energy in the velocity analysis. Dipping bed event at 1.4 seconds is at far too
high a velocity. (b) Same velocity analysis after DMO. Dipping bed event is now at
slightly too low a velocity. (c) Same velocity analysis after DMO and migration.
Dipping bed event is now at slightly too high a velocity.

N, 2
A
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E=|-=-Y ¢ 9
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where N, is the number of offsets in the sum. If the energy is smoothed over a win-

dow extending L samples before and after a particular sample point, this becomes

2
1+L

Ny
B—— S S | 29)

N22L+1) S | &

Semblance normalizes this energy sum by dividing it by the sum of the energy in

each input trace window:

E;
S; = I, (2.10)

N, (2L 11) 2L+1 E PR

=t-L j=1
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Because computing semblance rectifies and smooths the signal the semblance data
cannot be DMO-corrected and migrated as the original data were. However, weight-
ing the data before stack can provide many of the benefits of a semblance computa-
tion and still retain most of the waveform information. Let the weighted data ¢';; be
given by

1 N, -1/2

! 2
;' = qi; | o Y 0k - (2.12)

Ny k=1
Then the energy, computed using equation (2.8) applied to these weighted data, will
be equivalent to semblance if no smoothing over a time window is done. With
smoothing over time, the two will be similar, although not identical. An even
simpler weighting scheme is to apply automatic gain control (AGC) to the data
before stack, weighting the data, for example, by the energy in a time window
around each data point. Both of these weighting methods result in stacks in which
equally coherent events contribute similarly to velocity analysis even if one is much

weaker in the original data.

Data that has been weighted or AGC’ed may be DMO-corrected and migrated.
Migration does not exactly commute with gain, so the resulting image can be
degraded, but the velocity analysis is typically much sharper. If need be, the data
can be run through the velocity-space DMO and migration twice, once with weight-

ing for a sharper velocity analysis, and once without for an improved image.

Automatic velocity analysis

In conventional stacking-velocity analysis, only a few selected midpoints are
examined. For the velocity-space algorithms, all midpoints are processed, so consid-
erably more information is available. This extra information may be used for either

automatic or interactive velocity-analysis methods.

For the velocity analyses in this chapter, I hand picked velocities for every
fiftieth midpoints and interpolated and smoothed these picked values to generate

velocity models. It is excessively time consuming and error prone for a person to pick
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velocities from all the midpoints; an automatic optimization algorithm can be used
instead. For an objective function to maximize, one could use the cumulative energy
in the resulting image, tempered by penalty terms that favor smooth velocity models.
A more sophisticated approach might follow the lead of Toldi (1985), who incor-
porated an inversion for interval velocities into a nonlinear optimization algorithm
for stacking-velocity analysis, putting constraints on the physically more significant
interval velocities rather than on the stacking velocities themselves. To extend
Toldi’s methods to migration velocities, however, requires detailed knowledge of how
these velocities are related to the underlying interval velocities. This relationship is

examined in chapter 3, and its use for inversion is explored in chapter 4.

Interactive velocity analysis

Another way to use the velocity information incorporated in the velocity-space
data cube Is to examine the processed data interactively. Using currently available
high-speed graphics workstations it is possible to scan rapidly either over midpoint,
or over velocity, estimating velocities by the amplitude peaks and by the geological
plausibility of the image. Such scanning is particularly important for migration velo-
cities, because small changes in migration velocities cause movement of events, a
motion that the human eye is exceptionally adept at detecting. Once a velocity
function is chosen, the corresponding image can be extracted rapidly by interpola-

tion, allowing interactive updating of the velocity field.

As an example of how direct examination of migrated images can be used for
velocity analysis, I examine two portions from the offshore California data shown in
section 2.4. I show in Figures 2.22 and 2.23 a window of these data, imaged at
several velocities; this is the same data window shown in Figure 1.1 as an example of
migrated data. The strata seen here are highly contorted and faulted, and the velo-
city changes rapidly. The interpretation of the shape of the folds, and of the loca-
tions of faults, depends critically on the imaging velocity used. The migration velo-
city field in Figures 1.3 and 2.17, based on smoothed interpolation between velocities
picked every 200 meters, loses some of this detail. In conventional processing, an
error in the migration velocities used could impede understanding the geology; here,
no commitment to velocity has been made, and an interpreter can help choose the

velocities based on his or her knowledge of the expected structural style.

These figures represent the wavefield using variable intensity plots, rather than
the variable-area wiggle trace plots used in Figures 2.13 to 2.15. Wiggle trace plots

have limited dynamic range; without the elimination of half the traces and the
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application of AGC and other non-linear gain, Figures 2.13 to 2.15 would have large
areas in which no data could be seen. The variable intensity raster plots have much
wider dynamic range, and are much better at showing how the brightness (peak
amplitude) of events changes as velocity is varied. A raster graphics screen can have
much higher resolution and even greater dynamic range, allowing for detailed com-

parison of velocity panels.

A second window of the offshore California data is shown in Figures 2.24 and
2.25. This portion of the data is problematic to interpret. It is also an area where it
is hard to pick velocity peaks. The first panel (upper picture in Figure 2.25) is the
lowest slowness (highest velocity) of the four. In it only the sediments on the right
side of the figure around 0.9 seconds appear to be imaging at their peak amplitude.
A very high amplitude “bright spot” is seen at 8 km, under a bump on the sea floor,
but the upward turning “smiles” from overmigration suggest that the velocity is too
high here. In the next panel the area of bright sediments on the right moves up, and
the bright spot images better than at any other velocity. Also, the sediments
between about 7.2 and 7.5 km image reasonably well below about 0.8 seconds. In
the third panel, the uppermost sediments on the right and in the middle are imaged,
as are strata around 1 second on the left. Diffraction tails appear from the bright
spot at 8 km. The last panel is at water velocity. The sea floor becomes extremely
bright, as do the upper sediments on the right. Because of the disparity between the
velocities and the dip directions seen in the sediments on the left and right, I believe
that a steep fault separates them. The exact location of the fault is uncertain,
because of the almost total absence of coherent reflections in the region between 7.5
and 8 kﬁ; this whole gap may correspond to a fault zone, or there may be more than
one fault, as suggested by the irregularity of the seafloor. Energy panels for this
region show little or no coherence below the patina of seafloor sediments, so the velo-
city contours in Figure 2.17 are interpolated through this gap. This interpolation
gives a velocity near the bright spot that is too low, as evidenced by the diffraction

tails posing as structure in Figure 2.15.

The bright spot that stands out in the high-dynamic-range intensity plots of
Figures 2.24 and 2.25 is not prominent in Figure 2.15. I do not know the cause of
this small area of high reflectivity. It may correlate with the location of a large
fault, as suggested by the seafloor bump above it. It may be caused by gas accumu-
lation, and it may also arise in part from focusing effects, including out-of-plane 3-D
reflections. I do not know the location of these data (beyond the general description

that they are from off the southern California coast), so I cannot speculate further on
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FIG. 2.22. DMO-corrected and migrated constant-velocity stacks of a portion of the

offshore California data. The imaging slowness in the upper picture is 0.58 s/km and
in the lower picture it is 0.61 s/km.
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FIG. 2.23. DMO-corrected and migrated constant-velocity stacks of a portion of the

offshore California data. The imaging slowness in the upper picture is 0.64 s/km and
in the lower picture it is 0.67 s/km.



specific geologic interpretation.

As this last example of the offshore California data shows, interactive velocity
analysis can use both focusing information (interpreted structure) and energy infor-
mation (image brightness). In this example, velocity analysis using energy peaks gave
little information about the area near 8 km in midpoint, but analysis based on focus-
ing suggested a probable fault zone and a jump in velocity laterally. For some data,
both forms of information might be useful, but might not agree. For data in which
velocity varies substantially laterally, velocity analysis based on examining migrated
images can result in velocities that differ from those chosen based on finding peak
amplitude or energy, as noted in section 2.3. The velocity-space algorithm cannot
directly compensate for these differences, since it uses time migration, not depth
migration, and allows only a single velocity for both stacking and migration. How-
ever, if observed, these discrepancies may be used as an indicator that enough lateral
velocity variation exists to warrant further efforts at careful interval velocity analysis

and depth migration.

2.6 SAMPLING VELOCITY SPACE

The practicality of implementing the velocity-space algorithms depends directly
on how many constant-velocity stacks must be processed. In this section I derive esti-

mates of the number of stacks required.

Sampling strategy for constant-velocity stacks

Since velocity discrimination is much better for low velocities than for high
ones, low velocities should be sampled at a denser rate than high velocities. Also, to
be able to stack steeply dipping events, one needs to cover a velocity range that
extends to an infinite velocity. For these reasons, I sample in slowness, the reciprocal

of velocity, instead of velocity itself.

For a specified zero-offset time ¢, and a range of velocities v, normal moveout
defines a suite of hyperbolic summation trajectories in offset-time space (h,t). One
criterion for defining a good slowness sampling rate is to require that the time axis be
sampled densely enough by this family of hyperbolas for all times and offsets. In

terms of the slowness s the moveout equation (2.1) becomes
t2=1tf + 4s%h? (2.13)

where h is half-offset, ¢ is zero-offset time, and ¢ is time. All times are two-way

travel times. For two moveout curves with the same zero-offset time ¢, but
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FIG. 2.24. DMO-corrected and migrated constant-velocity stacks of a portion of the

offshore California data. The imaging slowness in the upper picture is 0.585 s/km
and in the lower picture it is 0.62 s/km.
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FIG. 2.25. DMO-corrected and migrated constant-velocity stacks of a portion of the

offshore California data. The imaging slowness in the upper picture is 0.665 s/km
and in the lower picture it is 0.685 s/km.
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slownesses differing by As, one has

As . (2.14)

2
At %ﬁAS = 4h’s
Jds t

Note that for hs >> ¢, then ¢ =~2hs and equation (2.14) becomes
At ~ 2h As . (2.15)

So for early times, large offsets, or low velocities, the time-axis sampling rate is pro-

portional to the slowness sampling rate.

Sampling for dip moveout

Because velocity-space DMO shifts data only along the velocity axis, if velocity
is sampled adequately in stacking, DMO should not require a higher sampling rate.

In terms of slowness s the DMO equation (2.5) becomes

k.2 1/2
s =sg| 1+ —L ) 2.16
9[ L ] (2.10)

Note that the DMO operator can be used to interpolate the velocity axis in any
fashion desired. The number and density of stacks can be changed during DMO, as
can the sampling variable used (e.g., convert sampling in slowness to sampling in
velocity, etc.) In particular, note that the high-velocity stacks are only needed to
image steeply dipping events, and can be discarded after the DMO correction is
applied. Thus, if some reasonable upper bound on expected velocities is known, fewer
stacks need to be migrated or inverse Fourier transformed than are originally

created.’

Estimating sampling density for stacking

The difference between two hyperbolas with the same zero-offset time 7 but
different moveouts can be characterized by the time difference between them at a
given offset. One wants, therefore, to ascertain how small As must be to keep the

corresponding At below a given size.

For a specified €, to ensure that At <e, equation (2.14) implies that an upper
bound must be found for 4h2s /t. This bound will exist, even for ¢ approaching 0,
since A will then also go to zero. For any non-zero offset &, the reflection data are
muted before the direct arrival at the highest slowness s, , so ¢ /2h <S4, and
thus

4h 28 < 4h 2smute
t - t

< 2h (2.17)

max °
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This gives

As < —£ (2.18)
2R

as an estimated bound on how finely s must be sampled to ensure that neighboring

moveout hyperbolas differ in time at offset A by no more than a specified amount e.

Sampling for migration
The amount events move during migration both in the lateral direction z and
in migrated time 7 also needs to be estimated. This movement Az and A7 can be

expressed as a function of the sampling interval As:

A =~ 9% A — _ 18O A (2.19)
Jds 32
and
Aras OT A — tsinftand . (2.20)
ds s

For a derivation of these equations, see appendix F.

From equations (2.19) and (2.20), one gets the estimated bounds

2

s .
A < T 1A 2.21
| sl_tmaxsinel z | (2.21)
and
| As | < —omin | AT . (2.22)

t max SN0 tand

Note however, that migration of a dipping event also shifts the frequencies down by
a factor of cosf (Stolt, 1978; Rothman et al., 1985), so that the allowable Ar should

be increased by a similar factor. Equation (2.22) then becomes

| As | < | A7 . (2.23)

min
22
¢ max g

Sampling in squared slowness

Sometimes it is even more efficient to sample evenly in squared slowness, which
samples low velocities more densely than does sampling evenly in slowness. Desig-
nate squared slowness by c=s2 Then Ao=2s As, and the sampling estimates in

equations (2.18), (2.21), and (2.23) become



-59.

Ag < Eomute (2.24)

hmax

O min

|Ac| < —™2 | Az | (2.25)

t max Sind

and

| Ac | gﬂ | AT . (2.26)

f max Sin20

Examples and discussion

To illustrate this section I use the same Gulf Coast data set used in Figures 2.7
through 2.9. The image was extracted from a series of stacks using even sampling in
squared slowness to cover a range from 0.0 to 0.46 sz/km2 (water velocity to infinity).
The acquisition parameters are: maximum offset h ., is 1.775 km, maximum time
used here is 3 seconds, time-sampling interval is 4 ms, and midpoint spacing is 33.5
m. DMO was used to resample the slowness axis to even sampling in slowness. The
range of slownesses used for migration is 0.333 s/km to 0.677 s/km, corresponding to
a velocity range of 1.48 to 3.0 km/s. If the maximum allowable time shift A¢ is set
to the sampling interval, then data below 62 Hz will be shifted less than a quarter
wavelength and will all add constructively during stacking. These data contain little
useful information with higher frequency content. Applying the inequality estimate
(2.24) with ¢=0.004 suggests that one needs Ac<0.00150. To cover the slowness
range from 0.0 to 0.67 with this sampling would require 300 stacks. However, this
criterion is much too restrictive in practice. It is not necessary to stack every possi-
ble event perfectly, but only to be able to reconstruct events by good interpolation
between stacks. A more reasonable bound is found by using €¢=0.016 and
h =0.5h ., which corresponds to allowing the dominant frequencies in the data to
shift up to a half wavelength at half the maximum offset. These parameters yield an
estimate of 75 for the requisite number of stacks. Applying the migration estimates
from equation (2.21) and allowing energy to move up to one trace laterally gives an
estimate of 93 stacks. Similarly, applying equation (2.23) with A7=0.016 s suggests
using 194 stacks.

Figure 2.7 was generated using 101 stacks with a sampling rate of Ac==0.0046
s/km. I now show that this is an adequate number for these data. Figure 2.26
shows a conventional NMO stack using the same variable velocity function used for

interpolation in creating Figure 2.7. The data in this figure, and all subsequent
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figures in this section, are plotted with the same gain and clip parameters as Figure
2.7. Figure 2.27 shows the difference between Figure 2.7 and Figure 2.26, confirming
that no more than 101 stacks are needed for these data to reproduce the quality of
more conventional processing. The small differences that remain visible in Figure
2.27 are caused by differences in the weights, mutes, and interpolators used by the
programs implementing the conventional NMO stack and the velocity space method.
To verify in a different way that 100 stacks are adequate here, in Figure 2.28 I show
the stacked section produced using twice the sampling density (Ag=0.0023) as used
for Figure 2.7. Figure 2.29 shows the difference between Figure 2.28 and Figure 2.7;
using more stacks makes no improvement. Figure 2.30 shows the same data as Fig-
ure 2.7, extracted using the same velocity function, but created now by discarding
every other stack before interpolation. Figure 2.31 shows that the difference between
these two is minor, consisting mostly of weakened amplitude on a few events when
fewer stacks are used. Those portions for which the velocity is farthest from any of
the stacking velocities used are degraded most, but the total difference between the
panels is slight.

These data were resampled during DMO to create 101 stacks evenly sampled at
a rate of As =0.00344 to cover the range 0.333 to 0.677 s/km. Figure 2.8 shows the
image extracted after DMO and migration using all 101 stacks, and Figure 2.32
shows the result using only every other stack; Figure 2.33 shows the difference
between the two. Again, the difference is slight and I conclude that the lower sam-
pling rate is adequate.

This data example suggests that the estimates derived using equations (2.18),
(2.21), and (2.23) will be reasonable, but in practice too conservative. The worst
errors caused by undersampling will be seen at early times in the section, and for
steeply dipping events. Using 50 to 100 stacks provides an adequate sampling density

for the data sets I have examined.

2.7 VELOCITY-SPACE IMAGING FOR THREE-DIMENSIONAL DATA

So far I have considered only two-dimensional data, collected along a single line
that is assumed to be perpendicular to all structure. I now look at the practicality of
extending these methods to three-dimensional data. For three-dimensional data, both
the midpoint y=(y,¥2) and offset h=(h ;,h5) become vectors with components in
the 2, and z, directions, as do their Fourier transforms, k, and k. The CVPM

equation (2.7) becomes:

k. 4k |22 Y2 k k. | 202 Y2
k,:ﬂ“1— eyt | o ] +[1—M] . (227)

40°? 40?
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FIG. 2.27. Difference between Figure 2.7, which uses 101 stacks, and Figure 2.26,
which uses conventional NMO stacking.
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FIG. 2.29. Difference between Figure 2.7, which used 101 stacks, and Figure 2.28,
which used 201 stacks.
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FIG. 2.31. Difference between Figure 2.7, which used 101 stacks, and Figure 2.30,
which used 51 stacks.
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FIG. 2.32. Migrated Gulf coast data from Figure 2.9, extracted from a suite of 51

constant slowness stacks after DMO and migrat

the same velocity function

2.9. The slowness sampling rate is half that used
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FIG. 2.33. Difference between Figure 2.9, which used 101 migrated stacks, and Fig-
ure 2.30, which used 51 migrated stacks.
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As in the two-dimensional case, this equation can also be implemented in terms of

shot and geophone coordinates instead of midpoint and offset.

For the CVS method, the transformatic;n to velocity space in two dimensions
exchanges the offset coordinate for a velocity coordinate. Generating constant-
velocity stacks using all offsets for a given midpoint in three-dimensions collapses the
two offset coordinates into a single velocity parameter. This loss of information is
not readily recoverable. Instead, the stacks must be generated separately for different
directions, trading the two offset coordinates now for the two parameters of velocity

and azimuth.

Consider an upcoming plane wave reflected from a single dipping bed. Let
again be the dip angle, and ¢ be the direction of dip, measured from the z; coordi-
nate axis, as illustrated in Figure 2.34. Suppose an azimuthal direction % is chosen,
again measured from the z; axis, and all traces with this shot to geophone offset
azimuth are selected as a working data set. The apparent moveout velocity is

(Levin, 1971)
-1/2
Vo =V [1 — sin%0 cos¥(¢-1) ] . (2.28)

This is the three-dimensional equivalent of equation (2.2). To apply it requires

estimating both € and ¢ from the data.

The Fourier domain expression for dip given in equation (2.3) needs only a sim-

ple change to allow for the dip direction; the equivalent relations are

Yy, = sinf cos¢ (2.29)
2w
and
ey, = sinf sin¢ . (2.30)
2w

Solving for ¢ by dividing these two equations yields
ky,

A (2.31)
ky |

tang =
Thus, Fourier transforming the data over both z; and z, axes effectively decomposes
the data into dip directions. 1 is known already, so the cos?(¢—1) term in equation

(2.28) can be evaluated. Moreover, substituting into equation (2.31) for ¢ gives

2 2
vk
sin0 — 2 . (2.32)

4w2(lcy 12+ k, 22)
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FIG. 2.34. Geometry of 3-D dip-moveout.
So the DMO equation (2.28) becomes
2 2 2 -1/2
vk, “+k, *)
Unpo = U [ 1- #— cos*(p—1)) :I . (2.33)
4w
As a special case of note, if the survey parallels the z axis (¥==0), equation (2.33)
reduces to
1)2ky12 -1/2 2
v = 1- 2.34
NMO "

which is just equation (2.4) again. If each azimuthal component of the data is
Fourier transformed independently, the y; axis may be chosen in each case to be the
azimuthal direction, so this last equation may be used generally. Note that equation
(2.34) contains no contribution from the cross-line direction. DMO in three dimen-

sions thus uses the same operator as in two dimensions, oriented along the
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appropriate offset axis, a point noted previously for other DMO implementations
(Bolondi et al., 1982.; Hale, 1983; Jakubowicz et al., 1984). One practical conse-
quence of this is that no Fourier transforms are required in the cross-line direction,
so each line in a given shot-receiver azimuth direction may be processed for DMO
independently.

This three-dimensional CVS algorithm requires that the data is binned into
different azimuths, and that coverage in midpoint for each azimuth bin is dense
enough to allow interpolation onto an even grid before Fourier transformation. There
is no restriction on offset range, but velocity discrimination degrades for low fold cov-
erage. The three-dimensional CVPM algorithm requires dense, evenly spaced sam-
pling along both axes for both midpoint and offset (or shot and geophone) coordi-
nates. In general requiring such densely sampled data is not realistic for current
three-dimensional acquisition. However, many three-dimensional data, especially
marine data, are collected as parallel two-dimensional lines. For such data, the
azimuth range is limited, and the three-dimensional velocity space algorithms are
practical. Without cable feathering there is only one azimuth present for parallel-
line shooting, so one can simply use the two-dimensional DMO algorithm on each
line, followed by three-dimensional migration. For small azimuthal deviation 4,
equation (2.33) may be approximated as

02k 2 -1/2
T — ll— "L (1 + 2¢ tang) ] : (2.35)

4w

Then if cable is feathering is present, or other azimuth binning is required, equation

(2.35) can be used to estimate the effects of the feathering.

Migration may be incorporated in the three-dimensional CVS algorithm just as

it is for two dimensions, except that equation (2.6) becomes
2 2 1/2
v (k.'ll +ky22) ]

o (2.36)

k,=w [1 -
This operator, unlike the DMO operator, requires cross-line information. However,
for many practical applications, the three-dimensional migration can be split into
two orthogonal passes of two-dimensional migration (Gibson et al., 1983). Thus it
should be feasible to include the two-dimensional migration step in the DMO algo-

rithm, followed by a cross-line two-dimensional poststack migration.
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2.8 CONCLUSIONS

DMO and migration can be implemented practically in a space of constant-
velocity stacks. DMO corrects the undesirable dip-filtering usually associated with
NMO stacking. Including migration after DMO converts the stacks into prestack
time-migrated sections. At each stage, an image may be extracted by interpolation
between the stacks. Both DMO and migration substantially improve the quality of

the resulting image.

The greatest advantage of the velocity-space imaging method is the potential
improvement in quality of velocity analysis. Because the data is imaged before
choosing velocities, the distorting effects geologic structure can have on velocity
analysis are largely removed. Also, the commitment to a velocity function is post-
poned and may easily be changed after examining the stacked, DMO-corrected, or
migrated section corresponding to any choice of velocities. The tremendous increase
in velocity information available when using the velocity-space algorithms requires
high-speed interactive graphics devices if one is to display and search the entire data
space. Automatic optimization algorithms can also be used to search the data to

improve velocity analyses.

These methods work best when lateral velocity variation is not large. When
velocities do vary significantly laterally, coherent images are often still produced, but
depth migration may be required to position all events correctly. For depth migra-
tion, interval velocities are required, so the next challenge is to understand how the
patterns of stacking or migration velocities observed are related to the underlying
interval. velocities when these velocities vary laterally. This is the topic of chapters 3

and 4.



