255

Finding the median on a vector computer

Marta Woodward and Stewart A. Levin

ABSTRACT

Median and quantile calculations are used in geophysics for discriminat-
ing against high amplitude noise bursts. While both plotting and processing
applications of the median have been presented in the past by the SEP, the
latter have been neglected in practice—in part because quantile calculations
have been much slower than mean and variance calculations. This paper dis-
cusses the results of a literature search for median and quantile algorithms that
are well-matched to array processors and vector computers. Timing compar-
isons are made between a vectorizable scheme and the nonvectorizable program
currently used by the SEP. Although the vectorizable algorithm requires 50%
more comparisons to find the median than its nonvectorizable counterpart (3n
as opposed to 2n for an array of length n), it runs six times faster on a Convex
C1-XP. An algorithm that finds the median with an asymptotic worst case of
3n comparisons is also outlined.

INTRODUCTION

In 1973, Claerbout and Muir observed that the median is a more robust statisti-
cal average than the mean: its spike-rejecting quality makes it a more stable estima-
tor of erratic data containing high amplitude noise bursts. Because of this property,
median and quantile calculations are routinely used in the SEP for rescaling seismic
data for plotting (Mehta, 1977). Schemes have also been described for using the
median in stacking and deconvolution (Woodward and Dellinger, 1984; Woodward,
1985). These processing applications have not gained widespread acceptance in the
SEP, partly because calculation of quantiles is more time consuming than calcula-
tion of means and standard deviations. The problem has been exacerbated by the
SEP’s use of quant (Canales, 1977) as a quantile program: nonvectorizable, the al-
gorithm fails to exploit modern vector computer architecture. This paper describes
a vectorizable quantile algorithm vquant based on a vector sorting scheme presented

SEP-56

Woodward and Levin 256 Median

by Stone (1978). Timing comparisons are made between quant and vquant which
show the latter to run approximately six times faster than the former on a Convex
C1-XP. Hopefully, the availability of this faster median algorithm will encourage
use of the median in processing applications.

QUICKSORT

The median (or, equivalently, quantile) programs presented in this paper are
based on Hoare’s quicksort algorithm—a full-sort, partition-exchange scheme (Hoare,
1962). Elements smaller and larger than a selected element (or key) are placed at
opposite ends of an array through a series of moves or exchanges. When the key
is finally placed in its sorted position, the array is partitioned: elements larger or
smaller than the key lie on either side of the key. The procedure is recursively
repeated on the smaller, partitioned arrays until the entire array has been sorted.
Assuming a reasonable (linear-time) partition method, the approach uses on the
order of nlog,n comparisons to complete a full sort, where n denotes array length.

Stone (1978) discusses partition algorithms that are well-suited for vector com-
puters. A ratfor subroutine coded from one of these algorithms and compatible
with quicksort is shown in Figure 1 as jpart.

VQUANT AND QUANT

Quicksort and jpart may be directly adapted for quantile calculation by succes-
sively discarding those partitions which do not contain the desired quantile—thereby
partitioning a progressively smaller array until the quantile is found. A ratfor ver-
sion of this algorithm is shown in Figure 2 as vquant. The algorithm requires on
average 3n comparisons for finding the median—as shown in Figure 3a.

The median routine used in the past by the SEP is shown in Figure 4 as quant.
This in-place scheme is more clever than vquant in that the array is completely
partitioned only once, being divided around the chosen quantile position & in its
last step. The algorithm recognizes that an array need not be fully partitioned in
order to rule out possible quantile candidates; it prunes the array as the calculation
proceeds—immediately discarding those ends that cannot contain the kth element.
This trick reduces the average number of comparisons for finding the median to
only 2n (see Figure 3a); unfortunately, it also prevents quant from vectorizing.

Timing comparisons between quant, and vectorized and nonvectorized imple-
mentations of vquant, are shown in Figure 3b. The algorithms were used to select
the median from odd-length arrays of random numbers on a Convex C1-XP com-
puter. Each array length was run for 2400 different arrays; the same random arrays
were used for each algorithm. The times shown on the vertical axis are in sec-
onds of cpu time for 2400 runs. Because the Convex Fortran compiler vectorized
Jpart inefficiently, an assembly code version was used for the timing runs. Although

SEP-56

Woodward and Levin 257 Median

#
partition subroutine
#
J=ipart(x,y,n)
#
X is input vector of length n
y is output vector of length n
n is vector length
#
the elements of x move to y such that: x(1) moves
to y(j); y(1)...y(j-1) are all less than y(j); and
y(j+1)...y(n) are all not less that y(j). j is returned.
#
because the Convex Fortran compiler vectorized this code inefficiently,
our timings were done for an assembly language version instead.
#
integer function jpart(x,y,n)
integer n
real x(n), y(n)

integer i, ibot, itop
real x1, xi

ibot=1
itop=n
x1=x(1)
do i=2,n {
xi=x(i)
if(x1.gt.xi) {
y(ibot)=xi
ibot=ibot+1
}
else {
y(itop)=xi
itop=itop-1
}
}

y(ibot)=x1
jpart=ibot
return

end

FIG. 1. Jpart.r: a ratfor version of a vectorizable partition algorithm.

SEP-56

Woodward and Levin 258 Median
_

vquant: vectorizing quantile finder
#
x is input vector of length n
n is vector length
k is the position of the element of interest
y is a work vector of length n
#
subroutine vquant(x,n,k,y)
integer n, k
real x(n), y(n)

integer first, last, i, j, jpart, m
real t

first=1; last=n

while (first.lt.last) {
m=last-first+1
j=first+jpart(x(first),y,m)-1
call vcopy (y,x(first) ,m)
if(j.gt.k) last=j-1
else if(j.lt.k) first=j+1
else first=last

}

return

end

#

vector copy subroutine
#
x is input vector of length n
y is output vecttor of length n
n is vector length
#
subroutine vcopy (x,y,n)
integer n, i
real x(n), y(n)

do i=1,n

y(i)=x(i)
return
end

FIG. 2. Vquant.r: a vectorizable, ratfor, quantile-finding program. The call to jpart
refers to Figure 1.

SEP-56

Woodward and Levin 259 Median

Average Number of Comparisons

Comparisons
2

-
5

0 1000 2000 3000 4000
Array length

FIG. 3a. The number of comparisons required by vquant (upper curve) and quant
(lower curve) for finding the median—averaged over 2400 runs for each array length.

Timing Comparisons

2000

Time

0 50000 1e+06
Array length

FIG. 3b. Timing comparisons between vectorized vquant, scalar vquant and quant
(bottom, middle and top curves, respectively). The times shown on the vertical
axis are in seconds of cpu time for 2400 runs.

SEP-56

Woodward and Levin 260 Median

quant: nonvectorizing quantile finder
#

k is the position of the element of interest
a is input vector of length n
n is vector length
#
subroutine quant(k,a,n)
integer k, n
real a(n)

integer low, hi, i, j
real aa, ak

low=1; hi=n
while (low.1t.hi) {

ak=a(k)
i=low
j=hi
repeat
if (a(i).lt.ak)
i=i+1
else {
while (a(j).gt.ak)
i=j1
if (i.gt.j)
break 1
aa = a(i)
a(i) = a(j)
a(j) = aa
i=i+1
i=J1
if (i.gt.j)
break 1
}
if (j.1t.k)
low = i
if (k.1t.i)
hi =j
}
return
end

FIG. 4. Quant.r: a nonvectorizable, ratfor, quantile-finding program.

SEP-56

Woodward and Levin 261 Median

vquant requires 50% more comparisons per array length than quant, it runs almost
six times faster. Somewhat more than half of this improvement results from the
exploitation of vector computer architecture; the remainder is due to optimized
assembler coding.

OTHER ALGORITHMS

Vector algorithms have a problem in that they become increasingly less efficient
for shorter vectors. A standard countermeasure is to process many such vectors
simultaneously. By forming new arrays with one element from each short vector,
new opportunities open up for vectorization. For the above quicksort-based rou-
tines this strategy does not help. These quantile-finders are linear-time methods
only on average; for some inputs they can run much more slowly, with worst-case
performance proportional to n? instead of n. Computing many medians simultane-
ously produces execution times proportional to the number of medians multiplied
by the slowest individual median calculation. Consequently, in computing many
short medians simultaneously the average number of calculations increases—eating
up the savings of reduced vector overhead.

Fortunately, other variations on the quicksort methods do guarantee linear per-
formance. Bleich and Overton (1983) give such an algorithm for the more general
weighted median problem. By making an intelligent choice for the trial median
(key) at each partition, they avoid selecting extreme outliers and insure the elimi-
nation of a certain fraction of the elements at each step. This selectivity in choosing
the keys guarantees linear performance.

At present, the method requiring the fewest number of comparisons is the
non-quicksort algorithm of Schénage et al. (1973)—with a worst-case performance
asymptotically proportional to 3n. The scheme in effect preprocesses its input array:
it creates a group of partially ordered subsets; sorts these subsets by their medians;
discards the outlying elements, then passes a greatly reduced array to an algorithm
like quant or vquant. While the algorithm is adaptable to computing simultaneous
medians on a vector machine, it has a high overhead cost which probably makes it
unsuited for the small arrays usually encountered in geophysical applications.

CONCLUSIONS

Following suggestions from the literature, we were able to markedly improve the
speed of median calculations on our Convex vector computer. The majority of the
improvement came from using a less efficient, but vectorized method of partitioning
an array into those elements less than and those greater than a given value. This
approach will also speed up the computation of quantiles and weighted means, an
important component of L! minimization. We hope this will encourage a more

SEP-56

Woodward and Levin 262 Median

widespread use of these robust statistical measures in geophysical data processing,
both here at the SEP and elsewhere throughout the exploration industry.

REFERENCES

Bleich, C., and Overton, M.L., 1983, A linear-time algorithm for the weighted me-
dian problem: Computer Science Department Technical Report no. 75, Courant
Institute.

Canales, L., 1976, A quantile finding program: SEP-10, pp. 99-100.

Claerbout, J.F., and Muir, F., 1983, Robust modeling with erratic data: Geophysics,
vol. 38, no. 5, pp. 826-844.

Hoare, C.A.R., 1962, Quicksort: The Computer Journal, vol. 5, no. 1, pp. 10-15.

Mehta, S., 1977, Equalizing gain on seismic sections by quantiles: SEP-11, pp.
205-210.

Schonhage, A., Paterson, M., Pippenger, N., 1973, Finding the median: Theory
of Computation Report no. 6, Department of Computer Science, University of
Warwick.

Stone, H.S., 1978, Sorting on STAR: IEEE Transactions on Software Engineering,
vol. SE-4, no. 2, pp.138-146.

Woodward, M.J., 1985, Statistical averages for velocity analysis and stack: median
vs. mean: SEP-42, pp. 97-111.

Woodward, M., and Dellinger, J., 1984, Median spectra: SEP-41, pp. 35-50.

SEP-56

