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Finite-difference elastic anisotropic wave
propagation

John T. Etgen

ABSTRACT

The heterogeneous anisotropic elastic wave equation can be solved on a dis-
crete grid using an explicit finite-difference technique. This solution of the wave
equation is used for forward modeling as well as for prestack migration of elastic
wave fields. A three-dimensional version of the method can compute the elastic
wave field in a heterogeneous anisotropic medium due to a variety of sources.
For an axisymmetric-anisotropic 2-D medium, the equations that govern in-
plane pseudo-P and pseudo-S, waves are uncoupled from the S), wave equation.
The P-S, and S, wave fields excited by a line source can then be calculated
on separate 2-D grids. The finite-difference method uses spatial differentiation
operators centered halfway between grid points, and represents stresses and dis-
placements on a staggered grid. For common descriptions of an anisotropic solid,
no interpolation of grid values is needed during the computations. The wave
fields in both solid and liquid media are computed using the same equations;
layer boundaries are represented by changes in elastic constants throughout the
computational grid without need for explicit boundary conditions. Absorbing
boundaries are used to reduce undesirable edge effects. A free surface condition
is also incorporated at the top of the model. Elastic wave fields calculated using
the 3-D and 2-D versions of the algorithm agree with analytical solutions for
simple Earth models. Wave fields in more complicated models with varying
degrees of anisotropy and heterogeneity show expected behavior, although di-
rect comparison with analytical solutions is impossible. For 3-D calculations,
an efficient “out-of-core” algorithm computes multiple time steps on each pass
through the computational model to reduce the i/o cost of the method. The
algorithm is organized to deal with the data as a sequence of planes so the data
does not have to be transposed during the computations.
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INTRODUCTION

Acoustic isotropic models of the earth do not adequately model wave prop-
agation in realistic cases. S waves and the presence of anisotropy can provide
valuable information about the medium that seismic waves propagate through;
this information is lost when only considering acoustic isotropic wave propagation.
Allowing elastic wave propagation, and furthermore, removing the standard as-
sumption of isotropy more accurately describes waves that propagate in the Earth.
Finite-difference methods applied to the elastic wave equation provide one possible
method for solving the complicated equations that govern wave propagation in an
anisotropic solid. More realistic models of wave propagation will lead to a better
understanding of the waves observed in the Earth and to more accurate methods
of imaging the subsurface.

Many authors have addressed the propagation of waves in elastic media. Tra-
ditionally, however, finite-difference modeling of the elastic wave equation is usu-
ally limited to two-dimensional media and almost exclusively to isotropic media.
Kelly et al., (1976), describe a simple finite-difference approximation to the elastic
wave equation to model P and S, waves in isotropic homogeneous and heterogeneous
media. Several authors have suggested improvements to the finite-difference tech-
nique used for the elastic wave equation. Virieux (1984, 1986) describes a method
that updates stresses and particle velocities on a staggered grid that overcomes the
accuracy and stability problems of the non-centered standard finite-difference ap-
proximations of both the P-S, wave equations and the S, wave equation. Virieux’s
method is appropriate for 2-D isotropic heterogeneous media, including liquid lay-
ers. Although formulated using first order differences, Virieux’s method could be
extended to use more accurate difference approximations. Mora (1986a) described
a finite-difference method that represents the stresses and displacements on a stag-
gered grid similar to Virieux’s that solves the isotropic elastic wave equation in two
dimensions for P and S, waves using accurate convolutional derivative operators.
Kosloff et al. (1984, 1985), described a Fourier technique to solve the isotropic
elastic wave equation in two and three dimensions. Spatial derivatives taken in the
Fourier domain (accurate to about 2.5 points per highest wavelength) are more ac-
curate than finite-difference spatial derivatives. For this reason the Fourier method
seems ideal for 3-D calculations, but the convolutional operators designed by Mora
are accurate to about 3 points per highest wavelength giving the Fourier method
only a slight advantage in accuracy and storage. The need to access the computa-
tional data in transposed order is a disadvantage to the 3-D Fourier technique.

The finite-difference method presented here is based on the staggered grid and
convolutional operators of Mora (1986a) but updates displacements in time instead
of stresses. The method is designed to compute elastic wave fields in 3-D heteroge-
neous anisotropic solids. To simulate 2-D anisotropic elastic wave propagation an
axisymmetric-anisotropic medium is assumed; the pseudo-P-pseudo-S, wave equa-
tion is uncoupled from the S; wave equation and can be solved on a separate 2-D
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grid. The wave field amplitudes modeled by this 2-D procedure are accurate for a
line source. Examples show that the method accurately propagates elastic waves in
both isotropic and anisotropic media in both two and three dimensions. Values for
elastic constants derived from rock samples show that waves in anisotropic media
can exhibit exotic behavior.

ANISOTROPIC ELASTIC WAVE PROPAGATION

The seismic wave field in an anisotropic linearly-elastic lossless solid medium
excited by a given source or sources can be computed by evolving forward in time
with the elastic wave equation. A convenient form of the elastic wave equation used
for time stepping is obtained from the equations relating strain and displacement,
the stress-strain relation (Hooke’s law), and the law of conservation of momentum.
Starting from the relation between strains and displacements,

1,0U;,  8U; . .
€ij = 5(333] + 823,‘) 1,3 =1,3 (1)

strains (e;;) are computed from displacements (U:). Using the stress strain relation
for a general linear-elastic solid,

ox = Cijnei; 1,3,k 1=1,3 (2)

the stresses (o) in the medium are computed. The constants Cijr describe the
elastic properties of the medium, and p is the density of the medium. The quantities
eij, Ui, 0m1, Cijrit, and p are functions of spatial position but for compactness sake the
spatial dependence is suppressed here. Using the law of conservation of momentum,
and substituting z,y, z for 1, 5, k,
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the particle accelerations can be calculated. This representation of the elastic wave
equation can then be solved for particle displacements at later times by integration.

Since particle rotation plays no part in wave propagation, the 3x3 matrix oy,
must be symmetric; and e;; is also symmetric. The elastic stiffness tensor Cijk
must be symmetric and for energy conservation it must also be positive definite.
This means for example that Ok = O 5, €5 = €4 and Oijkl = Cijlk = Cjikl-
In light of these properties it is useful to introduce another notation system for
the quantities on, e;;, and Ciju. Using z,y,z rather than ¢,5,k and setting
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1 « zz, 2 « yy, 3 « 22,4 «— 2y, 5« zz and 6 « zy the ¢ and
e matrices become 6 element vectors and the stiffness tensor C becomes a 6x6
matrix. One can then write the stress-strain relation as follows:

(022 ) (Ciu Ci2 Cizs Ciuy Cis Cig) ( €2z
Oyy | Ciz Ci Cys Cyy Cas Ca €yy
Oz _ Cis Cas Css C3y Ciss Cse €2z ( 4)
Oy Cuy Ci Csy Cy Css Cu €2y ’
Ozz Cis C35 Css Cy Css Cse €z
\ Ozy J (Ci6 C2 C36 Ciu Cs¢ Ces) \esy )

without loss of generality.

Axisymmetric and orthorhombic anisotropy

Because it is often difficult to obtain unique values for all 21 independent elas-
tic constants Cyji for a generaly-anisotropic medium, it is worthwhile to consider
classes of anisotropy described by fewer independent elastic constants. Axisymmet-
ric anisotropy, described by 5 independent elastic constants, is a simpler form of
anisotropy commonly used to describe shales or other layered rocks. In most cases,
especially for shales, the vertical axis is take to be the axis of symmetry of the
elastic stiffness matrix C. In this case, the rock is often called transversely isotropic
because propagation velocity at a point in the medium does not depend on azimuth.
Axisymmetric anisotropy is convenient because the equations that govern pseudo-P
and pseudo-S, wave propagation (hereafter referred to simply as P and S, waves)
are uncoupled from the equation that governs S, wave propagation. If a medium
with no cross-line variations excited by a line source is considered, a convenient
2-D method for wave propagation can be derived. In the general heterogeneous
anisotropic case, 2-D computations are not possible because of the dependence of
the medium on azimuth, and the coupling of all wave types.

If a given medium is not invariant in the cross-line direction, but is axisymmetric-
anisotropic, wave field calculations are carried out in 3-D. The stress-strain relation
for a 3-D axisymmetric-anisotropic medium can be written as,

(O2z (C11 Ciz Cys ) { €zz )
Oyy Ciz Cu Ci 27
Ozz _ Ciz Ci3 Css €2z ( 5)
O2y C44 €zy
Oz 044 €zz
azy ) \ 066 / ezy /

with the constraint Cy3 = Cyy — Cgs. For this stiffness matrix to be positive definite
(for energy conservation), the following constraints must also be satisfied.

1
C112Ce 20 5 3320 5 Cuu20 ;3 Cfy < Css(Ci ~ 5 Coo)
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A 2-D version of the axisymmetric-anisotropic elastic wave equation can be
derived by considering in-plane (constant y) propagation and separating the stresses,
strains and components of the stiffness matrix that involve the y-direction from the
remaining quantities. We obtain two sets of equations, one that models P — S,
wave propagation and one that models S, wave propagation. Mathematically the
separation of P-S, waves from S, waves is an eigenvalue decomposition of the
Christoffel equation, see Dellinger and Muir (1985a). For 2-D modeling of P-S,
waves, a line source perpendicular to the z, z plane with particle motion in the z,z
plane is assumed; so the o,,, 0., Oy and ey, €, €,, terms are zero for wave
propagation in the z, z plane. The 2-D P — S, stress-strain relation is

Ozz Cn Cis €xz
02| = | Cus C’33 €2z | - (6)
Ozz 044 €z

Then, by applying the law of conservation of momentum in 2-D for the in-plane
stresses,

100 do U,
S|I==+ 2 _F| = z 7
p[ oz + oz ] ot? (7
1780,, 0oy, U,
;[az oz _F‘]“ a2’

the particle accelerations are computed; future time levels are computed by inte-
gration.

In the axisymmetric-anisotropic case S, waves excited by a line source perpen-
dicular to the z,z plane with particle motion in the y direction only involve the
terms 0yy,0,y, €2y, and e,;. To model z, z-plane S, wave propagation, the stress-

0 Ty C 66 ezy )

The law of conservation of momentum is,

1700,y OJoy,,
p[ax + dz it oot (%)

In both the P-S, equations and the S, equations, o,y and ey, are zero because they
only contribute to P waves propagating with a component in the cross-line direction
which were ruled out by our assumption of a 2-D medium excited by a line source.
A more complete treatment of axisymmetric anisotropy can be found in Dellinger
and Muir (1985a).

The orthorhombic class of anisotropy, which requires nine independent elastic
constants, is another convenient description of anisotropic solids. This form of
anisotropy is often used to model fractured rocks, especially limestones. The or-
thorhombic class is the most general anisotropic model that does not couple the
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normal and shear stresses, so it is the most general form that can be used on a stag-
gered finite-difference grid without need for interpolation of stress or strain values.
The stress-strain relation for a 3-D orthorhombic-anisotropic solid is given by

(02 ) (Ci1 Ci2 Cis ) ( €zz )
Oyy 1 Ciz2 Caa Cys €yy
Oz | _ Cis Ciys Clss €22 (10)
Oy C44 €zy
Ozz 055 €zz
ozy / \ Cv66 J N ezy J

Elastic wave field computations in an orthorhombic-anisotropic medium are usually
carried out in 3-D.

FINITE-DIFFERENCE METHOD

The standard finite-difference method (Kelly et al., 1976) applied to the elastic
wave equation is inadequate for large scale elastic wave field computations for two
reasons. First, the use of non-centered derivatives leads to instability and inaccuracy
especially for models with heterogeneous solid and liquid layers. Second, the low
accuracy of the first-order finite-difference approximations to the spatial derivatives
forces heavy oversampling of the spatial axes to avoid grid dispersion. When using
the second-order finite-difference representation of the elastic wave equation, it is
necessary to have greater than ten sample points per highest wavelength to avoid
numerical dispersion and numerical anisotropy (Sword, 1987), (Marfurt, 1984). To
overcome the need for oversampling, derivatives could be taken in the Fourier do-
main (Kosloff et al., 1984). 2-D or 3-D finite-difference algorithms that use con-
volutional operators and a staggered grid overcome the limitations of the standard
finite-difference method as well; see Mora, (1986a) for the 2-D isotropic elastic case.
As described by Mora, convolutional derivative operators can be obtained by in-
verse transforming the perfect operator, tk,, truncating the result to the desired
length and weighting with a gaussian taper. One advantage of a finite-difference
method over the Fourier method for 3-D calculations is the ability perform multiple
time steps during a single pass through the computational volume. Moreover, the
finite-difference method does not need to access the variables in transposed order as
does the Fourier method. For large 3-D problems accessing the data in transposed
order leads to great i/o expense. Unless the entire computational volume can be
held in-core or on a very fast peripheral storage device (as in (Kosloff et al., 1985)),
the Fourier method is inefficient. The finite-difference method detailed here is valid
for both 2-D and 3-D anisotropic elastic media including liquid layers. The stag-
gered grid is based on that of (Mora, 1986a) and I used Mora’s method for deriving
accurate derivative operators.

SEP-56



Etgen 29 Anisotropic wave propagation

Staggered finite-difference grid

A staggered can be used for elastic wave equation computations using centered
finite-difference derivative operators. To understand the reason for using a stag-
gered grid I will first examine the difficulty with the standard finite-difference ap-
proximation to the elastic wave equation. The standard finite-difference method
would evaluate all particle displacements at the same location. For example, in the
2-D case both U, and U, would be known at the given grid points (z,2). When
calculating the shear strain,

1,0U, 0oU,
Caz = 5( 0z + oz )’

the z derivative will be centered halfway between grid points in z and the z derivative
will be centered halfway between grid points in z. Since the two partials are not
evaluated at the same point, it is difficult to calculate the shear strain and the shear

stress. Interpolation or shifting is necessary, or inaccurate and unstable one-sided
derivatives must be used. The normal strains,

o O, U,
zz_ax, zz_az

also are not evaluated at the same location. Calculation of normal stresses also
requires shifting or interpolation.

This difficulty can be avoided by using a staggered grid. Figure 1 shows the
grid used by Mora and by the 2-D version of the algorithm presented here. The
displacements U, and U, are denoted by squares and triangles respectively. More
precisely, U, is known at(z — 1Az, 2) and U, is known at (z,z — 2Az). One can
exploit the shifting properties of centered first derivative operators by evaluating
0:; and o,, at (z,2) and o,, at (z — AT,z — %Az). The first step of the finite-
difference algorithm for a given time step is the computation of strains and stresses
from the displacements (equations 1 and 6). The derivatives

aUu, oU,
dr ’ Oz
are designed to shift forward one-half grid points, and the derivatives
oU, U,
9z ’ O

are designed to shift back one-half grid point in the direction the derivative is taken.
In all cases, the spatial derivatives are taken by convolving with the derivative
operators discussed above. The strains e,, and e,, will be evaluated at (z,2) and
the shear strain e,, will be evaluated at (z — Az, z — 3Az2). The elastic constants
C11,Css, and Cy3 are assumed to be known at the points (z, 2), so the stresses o,,
and o,, are evaluated at the points (z,z). The elastic constant Cy, is known at the
point (z — %Ax, z— %Az), so the shear stress o,, is evaluated at the same point.
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FIG. 1. Staggered grid for 2-D elastic wave field calculations. The circles are the
locations of normal stresses o0,,,0,,, the x’s are the location of the shear stress
0.,. Triangles and squares denote Ifz and U, respectively. Arrows denote spatial
differentiation, and show how the derivative operators shift forward or back to
compute stresses.

X A X A X A X A X A X A

l l i l d
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FIG. 2. Staggered grid for 2-D elastic wave field calculations. The circles denote 0,,

and o,,, the x’s denote o,,. The triangles and squares denote Uz and U:,,. respectively.
The arrows show how the derivative operators shift forward or back to compute
particle accelerations from stresses.
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The second step of the algorithm is the computations of particle accelerations
from stresses (equation 7). For this step, the derivatives,

80,, OJdo,,
dz ’ Oz
shift back one-half grid point in z and z respectively. The derivatives,

do zz 602:
oz ’ 0z
shift forward one-half grid point in z and 2 directions respectively. After this step,

the spatial derivatives required for the application of the law of conservation of
momentum (equation 7) are evaluated as follows:

00, 1 d0,, 1

Ep (z— EA.’B, z), s (z — EAx,z)
aazz ]- aazz 1

5z (277 38%) Gy (B2 342)

Figure 2 shows how the derivatives are arranged to shift from stresses to accel-
erations. The accelerations are evaluated at the original locations of the particle
displacements.

For 2-D S), wave propagation, the particle displacement is known at the grid
point (z, 2), and the shear stresses o,, and ,, are known at (z—31Az,z) and (z,2—
—Az) respectively. For the calculations of stresses from dlsplacements operators
that shift back one-half grid point in z and z are applied to Uy(z, 2) as follows:

ou,, 1 au,
Bz & 3852, (e,

Strains are computed using equation (1); stresses 02y and o,, are computed using the
stress-strain relation of equation (8). Then, the particle accelerations are computed
using equation (9). The derivatives,

z— —Az)

do,, 0oy,
0z ' Oz

are designed to shift forward in z and z respectively, which returns the particle
accelerations the values to (z, z).

The three-dimensional staggered grid is a simple generalization of the grid used
for two-dimensional calculations. The 2-D grid is used on each face of the cube

between (z,y,2) and (z + Az,y + Ay,z + Az). The particle displacements are
evaluated as follows:

1 1 1
U,(z - EA:c,y,z) y Uyz,y — EAy,z) y Ue(z,y,2 — EAz).

The strains and stresses are computed from derivative operators possessing the
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FIG. 3. Staggered grid representation for 3-D elastic wave field calculations. The
top cube shows how stresses are computed from particle displacements. The bottom
cube shows how particle accelerations are computed from stresses. The arrows
denote spatial diffgrentiation and show which way the derivative shifts.
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same shifting properties as in the 2-D case. The stresses are then evaluated as
follows:

azz (x’ y, z) b o-yy (x, y’ z) 2 Ozz (x, y, z) b

and

1 1 1 1
Ozy(z,y —,:Z-Ay,z — EAZ) y Ozz(T — EAzz,y,z - EAZ)’

1 1
Ozy(z — -Z-Ax,y - EAy,z).

Using the same principles as in the 2-D case, the derivatives taken to find the particle
accelerations shift forward or back as needed. The top cube of Figure 3 shows how
stresses are computed from the particle displacements; the bottom cube shows how
particle accelerations are computed from stresses. As above, all spatial derivatives
are taken by finite-differences using the convolutional operators of Mora.

Boundary conditions

To reduce unwanted reflections from the sides and bottom of the computational
grid, an elastic version of the Bl boundary condition described by Clayton and
Engquist (1977) is incorporated into the 2-D and 3-D algorithms. The boundary
conditions are designed to absorb horizontally propagating plane waves striking
the side boundaries and vertically propagating plane waves striking the bottom
boundary (Vidale and Clayton, 1986). For 2-D and 3-D propagation, equations
similar to equations 8 and 9 of Vidale and Clayton are used with velocities modified
to absorb anisotropic waves. The greatest advantage of the B1 conditions that they
require no extra storage and very few computations. The “sponge” type absorbing
boundaries described by Cerjan et al. (1985) are not useful for 3-D computations
because they require many points to be effective, and the full elastic equation still
has to be solved in the boundaries.

The free surface at the top of the grid is modeled by forcing normal and tan-
gential stresses to be zero at the top of the grid. It is not possible to put both
the shear stresses o,, and the normal stress o,, (in the 2-D case) on the surface
because of the staggered grid. I chose to place o,, on the surface; it is explicitly
forced to be zero at the top of the grid. Since o,, is not known at the surface, but
at one-half grid point above and below the free surface, the vertical derivative of
0., must be modified when computing the vertical particle acceleration at the free
surface. This modification is tantamount to forcing o,, to be zero at the free surface
by interpolation.

Many details of the implementation of the finite-difference method depend on
computer architecture and will not be discussed at length. However, it is impor-
tant to describe one aspect of the implementation of the finite-difference method
for 3-D models. For many 3-D models, the volume of computational variables can-
not be held in the core memory of even the largest computers. It is necessary to
consider how the algorithm can handle the storage and retrieval of intermediate
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results from a disk or other storage device. If the data are organized as a set of
constant y planes, the necessary computations to update a given plane to the next
time level only requires the information from nearby planes. For example, if eight
point convolutional derivative operators are used, then the calculation of stresses
from displacements involves eight planes. Similarly, the calculation of particle ac-
celerations from stresses would also involve eight planes. Stew Levin (pers. comm.)
suggested equating one time step of the elastic wave equation with applying an op-
erator to the computational volume. The operator contains the spatial derivatives
for calculation of stresses, accelerations, and the time integration calculations. One
time step of the algorithm involves sweeping through the computational volume as a
sequence of planes applying the operator to update the entire volume one time step.
The operator is spatially compact because the spatial differentiation operators only
extend a “few” points in each direction. The volume has to be read and written only
once for each time step. Moreover, the data do not have to be accessed from disk in
transposed order. To further reduce the cost of i/o, the algorithm can perform the
computations for two or more time steps on one pass through the computational
volume by cascading the operator for one time step, forming a multistep operator.
Then the volume has to be read and written only once for every two or more time
steps.

RESULTS

Modeling

The finite-difference method presented here can compute the elastic wave field
in a heterogeneous anisotropic model due to a variety of sources. However, it is
worthwhile to examine the method in a simple case. The solution to the elastic
wave equation in a homogeneous half-space with a source at the free surface, known
as Lamb’s problem, is well known and serves as a reference point for numerical
wave propagation algorithms. Figure 4 shows snapshots of vertical and horizontal
particle acceleration of the P-S, wave field in a homogeneous medium excited by
a vertical force at the free surface at the top of the model. The P, Sy, and P —
S, head waves are modeled and the Rayleigh wave at the free surface propagates
without dispersion. Figure 5 shows horizontal and vertical particle acceleration
seismograms observed at the free surface. Again notice that the wave types are
correctly propagated, especially the Rayleigh wave. Figure 6 shows snapshots of
the S, wave response to Lamb’s problem.

The finite-difference method explained here was designed for elastic media, but
can be used without modification to propagate waves through a combination of solid
and liquid layers. Figure 7 shows snapshots of the vertical and horizontal particle
accelerations of the wave field in a liquid layer over a homogeneous anisotropic

solid layer. Note the P-S, conversions and head waves occurring at the boundary
between the solid and liquid media.
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FIG. 4. Snapshots showing vertical and horizontal components of particle accel-
eration for solution to Lamb’s problem in 2-D. Note tft:e Rayleigh wave on the
free surface that propagates without dispersion. The source time history was a
second-derivative gaussian pulse with 15 Hz center frequency.
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FIG. 5. Vertical and horizontal components of particle acceleration at surface. So-

lution to Lamb’s problem in 2-D. The Rayleigh wave on the free surface propagates
without dispersion.
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FIG. 6. Cross-line horizontal component (S wave) snapshot and surface seismo-

gram. solution to Lamb’s problem in 2-D computed by the Sp wave equation. In
this case there is no Rayleigh wave in the z, z-plane.
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FIG. 7. Snapshots of vertical (top) and horizontal (bottom) components of particle

acceleration for wave propagation in a liquid layer above an anisotropic solid layer.
Wave conversion is correctly modeled at the solid-liquid interface.
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FIG. 8. Geologic model for axisymmetric-anisotropic P-S, and S, wave propaga-
tion. The elastic constants stay fixed within each layer, and represent the “Green-
horn shale” and other anisotropic rocks.

The elastic wave field in a complicated anisotropic model is usually not known
analytically, but the performance of the algorithm can still be judged in a qualitative
fashion. To model the elastic wave field in an axisymmetric-anisotropic medium,
the 2-D version of the finite-difference method can be used. The geologic structure
for the model consists of two anisotropic layers over a fault block. The elastic
constants for the top layer were taken from the “Greenhorn shale” of Dellinger
and Muir (1985a). The elastic constants for the remaining layers were derived by
varying the elastic constants of Greenhorn shale. Figure 8 shows the structure of
the geologic model. Figures 9 and 10 show snapshots at two time levels of the
P-S, wave field in the axisymmetric-anisotropic model due to a vertical force at
the free surface. The anisotropic nature of the wave field is evident, the S, wave
triplicates, and the P wave propagates with a “football” shaped wave front. Figure
11 shows two snapshots of the S, wave field in the same model. The S, wave is
elliptical in the top layer. The wave field behavior (both P-S, and S,) in the
top layer qualitatively agrees with results shown by Dellinger (1985b). Figure 12
shows the cross-line horizontal component of the surface seismogram recorded for
this model. Figures 13 and 14 show the in-line horizontal and vertical component
seismograms for the model. The various mode-converted reflections, diffractions,
and direct waves including the Rayleigh wave are present.

The elastic wave field in an orthorhombic-anisotropic heterogeneous model may
be quite complex. Confidence in the method, gained through simple examples
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FIG. 9. Snapshots of vertical and horizontal components of particle acceleration for
elastic anisotropic wave propagation in a complex model. Note P-S, conversions,
triplicating direct S, wave and Rayleigh wave at the free surface.
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FIG. 10. Snapshots of vertical and horizontal components of particle acceleration
for elastic anisotropic wave propagation in a complex model at a later time. Note
P-S, conversions, P-S, diffractions, Rayleigh wave, and triplicating direct S, wave,
reflections from the free surface and diffractions from the fault block.
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FIG. 11. Snapshots of cross-line horizontal component of particle acceleration for
elastic anisotropic wave propagation in a complex model at two time levels. There
is no coupling with the P-S, wave equation since the medium is assume to have
no cross-line variations and is transversely isotropic. The S), wave has an elliptical
shape as expected (Dellinger and Muir, 1985a).
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FIG. 12. Cross-line horizontal component of particle acceleration at the surface
collected over heterogeneous anisotropic 2-D model. Only S, waves are present in
this section.
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FIG. 13. In-line horizontal component of particle acceleration collected over het-
erogeneous anisotropic 2-D model. Note non-dispersive Rayleigh wave and various
reflected and mode-converted arrivals.
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FIG. 14. Vertical component of surface seismogram collected over 2-D heteroge-

neous anisotropic model. Rayleigh wave present, along with several reflected and
mode-converted arrivals.
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FIG. 15. Plan view of orthorhombic-anisotropic geologic model. The lighter layers
represent fractured limestones. The “cracks” are in the y, z-plane.

supports the belief that the method will behave correctly in the 3-D orthorhombic
anisotropic case. Figure 15 shows a plan view representation of the 3-D orthorhombic-
anisotropic model used in this section. The darkest layer is the Greenhorn shale,
and is axisymmetric anisotropic. The lighter layers represent fractured limestones
(orthorhombic anisotropic class). P wave velocity varies by 25 percent depending on
direction; S wave velocity varies by a similar amount depending on the polarization
of the shear wave. Snapshots of the elastic wave field the orthorhombic-anisotropic
heterogeneous 3-D model calculated by the finite-difference method of this paper is
shown in Figures 16, 17, 18, 19, and 20.

The source was a force on the free surface applied to a small region with linearly
polarized particle motion in the z, z plane 45 degrees from vertical. Figures 21, 22,
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FIG. 16. Snapshots of vertical component of particle acceleration for 3-D elastic or-

thorhombic-anisotropic wave field.
.3 seconds. Each frame is a taken fro
model containing the source point.

rames are sampled every .15 seconds starting at
m a constant y slice through the computational
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FIG. 17. Snapshots of z component of particle acceleration. The slices are at the
same locations as for the vertical particle accelerations.
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FIG. 18. Snapshots of y component of particle acceleration.
previous two figures.

Same location as
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FIG. 19. Snapshots of vertical component of particle acceleration for 3-D or-
thorhombic-anisotropic elastic wave field. Frames are sampled every .15 seconds
starting at .3 seconds. Each frame is a taken from a constant z slice through the
computational model containing the source point.
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FIG. 20. Snapshots of y component of particle acceleration taken from the same
location as the z component shown in the last figure.
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FIG. 21. X component of the VSP recorded in an orthorhombic-anisotropic 3-D
model. The well was located 1 600 meters from the source location in the z direction.
The source was linearly polarized at 45 degrees in the y, z-plane.

and 23 are a 3-component VSP collected at offset 1 600 meters in the z direction
from the source location.

Prestack Migration

The wave propagation method of this paper is also useful for migration of elas-
tic wave fields in anisotropic media. Prestack migration of an elastic wave field is
an extension to acoustic prestack reverse time migration (see Etgen (1986) for the
acoustic case and Mora (1986b) for the elastic isotropic case). The recorded wave
field, in this case from an elastic anisotropic medium, is time reversed and propa-
gated back into the subsurface model. Imaging is accomplished by correlating with
the source wave field which is also propagated in reversed time. Figure 24 shows
an S), wave shot profile gathered over an axisymmetric-anisotropic elastic medium.
Figure 25 shows the recorded data propagating in reversed time, and Figure 26
shows the imaged section using anisotropic wave propagation. The reflectors are
imaged and positioned correctly in depth. Figure 27 shows the same data imaged
using isotropic wave propagation, where the velocity was chosen to be the horizon-
tal velocity of the medium. The image is not positioned correctly in depth and the
structure is incorrect. It is also possible to image the P-S, section using reverse-
time migration, but more complicated imaging conditions beyond the scope of this
paper are necessary to unscramble the coupled wave fields.
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FIG. 23. Z component of the VSP in the 3-D model.
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CONCLUSIONS

The elastic wave equation can be solved in heterogeneous anisotropic media us-
ing a finite-difference technique. The method computes wave fields in both 2-D and
3-D models. The 2-D version assumes an axisymmetric-anisotropic medium (with a
vertical symmetry axis) with no y-direction variations excited by a line source. The
resulting P-S, equation and S, wave equation are solved separately on 2-D grids.
The 3-D version allows both axisymmetric anisotropy and orthorhombic anisotropy
both with arbitrary geologic structure. A variety of outputs are produced; snap-
shots, surface seismograms and VSP’s can be collected for a given model. The 3-D
version uses an efficient out-of-core technique to reduce i/o cost and allow compu-
tation of large scale 3-D elastic models. Both the 2-D and 3-D methods produce
accurate synthetic seismograms and I show how to use the S; wave equation to
image an anisotropic subsurface using reverse-time migration.

Modeling the Earth as a solid and removing the standard assumption of isotropy
should lead to better understanding of wave fields that propagate in the Earth and to
better methods of imaging the subsurface. The finite-difference technique presented
here can be used for modeling wave fields in the subsurface and for imaging wave
fields observed at the surface or in a borehole.
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FIG. 24. Surface seismogram of cross-line particle acceleration, S, waves, recorded
over a dipping layer, fault block model.
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FIG. 25. Sj wave field propagating in reverse time using the anisotropic elastic Sy
wave equation.
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FIG. 26. Prestack depth migrated image obtained using the anisotropic elastic S,
wave equation. The reflectors are correctly imaged.
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tion. The velocity used for back propagation was the horizontal S, wave velocity.
The image is not correct; the dipping bed is imaged too deep and the faulted bed
should be flat.
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