Appendix A

Profile Migration by the Hybrid Method

In this Appendix, I compare profile migration by double downward continuation with
profile migration using the hybrid method. In the hybrid method, the downward continu-
ation of the source is replaced by time shifting. For this comparison, I assume a constant

velocity; the arguments can be easily extended to media in which ray theory applies.

A.1 PROFILE MIGRATION BY DOUBLE DOWNWARD CONTIN-
UATION

The reflectivity of the subsurface, R, can be estimated by the ratio between the upgoing
field, U, and the downgoing field, D, (Claerbout, 1985). For a given frequency, w
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(A.1)

where * denotes conjugation. U D" is the cross-correlation between the upgoing and down-
going fields in the frequency domain; integration over w gives the zero-lag cross-correlation.
At a given frequency, the denominator in (A.1) is a wave divergence correction that de-
pends on z and z. Because of the instability of dividing by |D|?, this factor is either
ignored or damped by the addition of a constant.

In equation (A.1) it is assumed that there is no variation in the y direction. The source

and receivers are, therefore, cylindrical (line source and receivers). The Green’s function
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for a line source is

—tk.z

tk, ’

e

G(kz,z,w) =

where k, = \/% — k2. The division by k, implies a cosine weighting with ray angle.
This weighting is ignored in zero-offset migration because each receiver is assumed to be
assoclated with its own source in the exploding-reflector model, which makes the cosine
factor to be equal to 1.

To obtain the migrated image, we first extrapolate the field recorded at the surface,
p(z,z = 0,t), to the depth z. As in post-stack migration, extrapolation can be done by

applying a phase shift in the frequency-wavenumber domain when the velocity does not

vary laterally,

—iz 92 g2
p(kz, 2,w) = p(kz,0,w)e Vo2 k= (A.2)

When the velocity varies laterally, finite differencing can be used.

Because imaging is done in the space domain, we need to Fourier transform equa-
tion (A.2),

. fw2 ]
p(z,2,w) = /P(kz,O,w)e_'z vz kge""”dlcz . (A.3)

Next, we extrapolate the source and apply the imaging principle in (A.1) to obtain the

reflectivity at a given frequency. The migrated image (at t = 0) is obtained by adding all
frequencies,

pi(z,2,t =0) =

2 B
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e~*2dk, | |D(z, z,w)| 2 dw . (A.4)
wo 2

The limits of the integrals in equation (A.4) and all other integrals in this appendix are

from —oo to oo.
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A.2 PROFILE MIGRATION BY THE HYBRID METHOD

Because a profile has only one source, it is easy to compute the source éxtrapolation
term analytically by ray tracing, which is cheaper than downward continuation. This
(hybrid) method therefore mixes wave-theoretical extrapolation of the receiver wavefield
with ray-theoretical time shifting of the source wavefield. The amount of the time shift
for a receiver is equal to the traveltime from the source to that receiver at the new depth
and can be determined by ray tracing. The image at ¢t = O is then mapped to the output
at that depth. The method was used by Al-Yahya and Muir (1984) and by Reshef and
Kosloff (1986). This method is schematically shown in Figure A.1. Note that while the
downward continuation paths are normal, the energy also moves laterally besides moving
downward as the receivers are downward continued. The result is that the illuminated
area is limited to half the cable length for a flat reflector.

Replacing the downward continuation by time shifting assumes that ray theory can be
used. Ray theory breaks down if the medium has properties that change within a distance

that is less than the wavélength of the propagating wave.
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FIG. A.1. (a) A schematic diagram of profile migration by the hybrid method. Vertical
lines are the downward continuation paths and slanted lines are the time shifting paths.
Note that while the downward continuation paths are normal, the energy also moves
laterally as the receivers are continued. The result is that the illuminated area is shorter
than the cable length as shown in (b).

The imaging principle used for this method is similar to the one used in post-stack

migration. In post-stack migration, where the exploding reflector model is used, the image
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is taken to be at t = O after extrapolation. In profile migration, the image is taken to
be at t = 7, where 7 is the traveltime from the source to the receiver at that depth.
Alternatively, we can shift the extrapolated field by r and take the image at t = 0. For a
constant-velocity model, r = /z2 + 22 /v and the migrated gather is

. w2 1
p2(z,2z,t =0) = / /p(kz,O,w)e_tz 'ﬁ—kge—ikzzdkz et eVz212? /22 + 22 dw
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= / /P(kz,O,w)e o emtkaz g [—x\/ﬁ- dw , (A.5)

where a divergence correction is also applied by multiplying by v/z2 + 22.

Note that in both (A.4) and (A.5), the extrapolation of the upgoing waves is done in
the same way, so line receivers are assumed in both cases. The difference between the
two equations lies in the source-extrapolation terms. In equation (A.4), a line source was

assumed while in equatien (A.5) a point source at y = 0 is assumed.

A.3 GREEN’S FUNCTIONS

The last term in the integrand of (A.5) is nothing but the reciprocal of the Green’s function
of a point source. Figure A.2 compares it to the conjugate of the Green’s function of a
line source in (A.4) for a given depth and frequency. The figure shows that there is both

an amplitude and a phase difference between the two functions.

To explain the differences that appear in Figure A.2, I will compare the two Green’s
functions in the space domain. The Green’s function for a line source is the Hankel
function of zero order. This is easily obtained by noting that the general solution of the
wave equation in cylindrical coordinates is a linear combination of the zero-order Hankel

functions of the first and second kind,
Glrw) = el B (Gr) + e B (Cr),

where ¢; and c¢; are constants (for a given frequency); Hél)(.) represents the outward

traveling wave while H((,z)(.) represents the inward traveling wave. If we have a line source,
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FIG. A.2. The source-extrapolation terms at a given depth and frequency. The solid line
is for a point source; the dashed line is for a line source. Jz)a.) Real part. (b) Imaginary part.

Parameters are: frequency=45 Hz, v=3 km/sec, dz=40 m, z=1.5 km. Both functions have
been normalized to get rid of multiplicative constants.

then there is only an outward traveling wave. Therefore,
G(z,2z,w) =c; Hc(,l)(%\/:lc2 + 22) . (A.6)

For large arguments, the Hankel function has the asymptotic expansion

2 —i(a—Z
HD (@) m g = oD

Abramowitz and Stegun (1965) (for small arguments it has a logarithmic singularity).

Therefore, for large arguments, the Green’s function for a line source is

v W .4
~ —i(%y/z24+22- 1)
G(z,z,w) ~ /w———\/m e rAN (A7)

which I will take to represent D in (A.4). The large argument requirement in (A.7) means

it is valid for the far field or high frequency, namely when ray theory applies.
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The first difference between (A.4) and (A.5) is the 7 /4 phase shift that is found in (A.7).
This phase shift is clearly observed in Figure A.2. The second difference between (A.4)
and (A.5) is the divergence correction. In (A.5), the divergence correction is v/z% + 22. To

obtain the divergence correction in (A.4), we need to compute |D|~2. From (A.7),

D(z,2,w)| 2 ~ w(z?+:2)3

= wdiv(z,z2), (A.8)

where div(z,2) is a divergence correction. Note that it is the same as the divergence
correction in (A.5). Allowing for the x/4 phase shift and the divergence correction, we
see in Figure A.3 that the amplitudes and phase become much more similar. It is im-
portant, however, to note that the figures shown correspond to one frequency. When
adding the various frequency components using equation (A.4), observe that the terms are
w-dependent. This dependence comes from two places, w in (A.8) and the coefficient a
in (A.6) (which is w-dependent).
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FIG. A.3. The result of applying divergence correction and a = /4 phase shift to the dashed
line in Figure A.2. The functions were scaled so that they match at small offsets. (a) The
real part. (b) The imaginary part.
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FIG. A4. A migrated dipping reflector. (a) by downward continuation of receivers

and time-shifting. (b) by downward continuation of both source and receivers and
cross-correlating.
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FIG. A.5. (a) Images at traveltime depth=.5 sec taken from Figure A.4. The solid curve
1s from Figure A.4a; the dashed curve is from Figure A.4b. Note the phase shift between
the two curves. (b) The result of applying a # /4 phase shift to the dashed line in (a).
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The differences between the two methods are not expected to produces big differences
in the final migration result. Figure A.4 shows that the two methods give the same image
except for a difference in the amplitude. Figure A.5 closely examines the images at a
particular traveltime depth from Figure A.4. The figure shows the predicted phase shift.
The amount of the phase shift is verified to be about 7 /4 by applying a x/4 phase shift
to the dashed line.

The difference in the divergence correction and the phase shift between the two methods
is the result of assuming a line source in the double-downward continuation method and a
point source in the hybrid method. As noted earlier, line receivers were assumed in both
methods. This means that a divergence correction and a phase shift should also be applied

to the upgoing field if we want to use point receivers.



