Appendix B

Verification of the elastic adjoint

operation

B.1 Overview

B.1.1 Testing adjoint implementations

One way to test an implementation of an adjoint operation is to see whether the answer
appears to be correct. This is done in chapter 4 where one iteration of an inversion (= the
adjoint operation) applied to a diffraction yields a filtered point.

Another more quantitative way is by checking if the implementation of the adjoint
numerically obeys the definition of the adjoint. This is also known as the dot product test
and is the test preferred by Jon Claerbout. The dot product test consists of numerically
checking that

x"ATy =yTAx+te (B.1)
where A denotes a forward operator, AT denotes the presumed adjoint operator to A
that is to be checked, x and y are arbitrary vectors, and ¢ is the expected numerical error

which is related to computer precision and accumulation of roundoff errors in doing the
operations A and AT,

B.1.2 1D acoustic tutorial

This appendix uses a dot product test to provide a numerical verification that the adjoint

operation given by equations 3.36 through 3.44 has been correctly implemented. Before
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doing this for the general elastic case, I will specialize the formulas to the constant-velocity
acoustic case in 1D (i.e. solve for density only). This tutorial should help provide the reader
with a good understanding of exactly how to compute the adjoint equations.

The 1D density adjoint program is based on the interpretation of the adjoint given in
section 3.4.6. As expected, it yields the same program that one could obtain by reordering
loops in the linearized forward problem (an adjoint operation can be expressed as multipli-
cation by a transposed forward problem matrix AT and can thus be achieved by carefully

reordering loops in the linearized forward problem code A).

B.1.3 1D acoustic results

For small sized problems, the dot product test is passed to computer precision (ie. e~
10~7) verifying the numerical implementation is correct. Several tests indicate that two
factors can increase ¢, the size of the problem and the way that the forward problem handles
roundoff. For larger 1D problems (of a size equivalent to a small 2D problem) and using
the same eight-point convolutional derivative operator used in the 2D elastic modeling
program, the size of ¢ increases to 10~5. This implies that the level of accumulated
roundoff noise in the elastic finite difference program used to do inversions in this thesis
is about 1075,

B.1.4 2D elastic results

The elastic inversion code computes the linearized forward problem as the difference be-
tween two nonlinear problems (as a finite difference). This results in an accumulated
roundoff level of about 102 rather than a level of 10~° implied by the 1D acoustic tuto-
rial. Thus, the value of ¢, the expected precision of the dot product test is also 10~3. A
dot product test done using the elastic program passes to within this expected precision

of 103 verifying the 2D elastic adjoint implementation is correct to within the accuracy
of the test.

B.2 Tutorial: the 1D constant-velocity acoustic case

In order to gain a knowledge of the dot product precision parameter & one may expect in
an elastic inversion and to gain an understanding of the adjoint calculations, I will first

treat the special case of a 1D constant-velocity acoustic medium.
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B.2.1 Mathematical proof of the adjoint

From equation 3.33, the linearized elastic forward problem specialized to a constant veloc-

ity and variable density 1D medium is

Su(z,,t) = / dz 6p(z) Gz, t;z,0) + i(z,t) = Ax . (B.2)
From equation 3.36, the adjoint operation is
ép(z) = -/ dt / dz, G(zy,t;z,0) * i(z,t) Su(z,,t)
- _ / dt / dz, i(z,t) ¥(z,t) = ATy (B.3)
where
¥(z,t) = / dz, G(z,—t; 2,,0) * Su(z,,t) (B.4)
and
u(z,t) = / dz' G(z,t;2',0) x f(',t) (B.5)

is the nonlinear forward problem (the Green’s function G(z,t; z',0) is the impulse response

of a delta source at ¢t =0 and z = z').

Mathematically, equation B.3 is the adjoint operation corresponding to equation B.2

as can be seen by the following

yFAx = / dt / dz, 5u(z,,t)/ dz 6p(z) G(zy,t; z,0) * u(z,t)

= f//dt dz, dz 6p(z) Su(z,,t) G(z,,t; z,0) * u(z,t) . (B.6)
and

xTATy = /dz 6p(z)/dt/d:c,é(z,,t;x,0) * u(z,t) bu(z,,t)

= ///dt dz, dz 6p(z) bu(z,,t) (:}'(z,.,t;:!:,()) *u(z,t) . (B.7)

Equations B.6 and B.7 are equal verifying
xTAy = yTAx (B.8)

which is the definition of the adjoint given in elementary mathematical texts. This test is
mathematically trivial considering I derived the adjoint expression to obey the definition
of an adjoint. A more interesting test is whether the dot product test is passed numerically

to the expected precision.
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B.2.2 Numerical calculation
Linearized forward problem

In practice, it is too expensive (in the 2D calculations in this thesis) to evaluate the integrals
over the Green’s functions to compute the forward problem. Rather than evaluating §u

using,
fu = /dz 5pCxa (B.9)
I first compute a wavefield §v(z,t) by solving the wave equation

POV — XOg6v = —6pt (B.10)

and then interpolate the data at the receiver locations using
Su(z,,t) = / dz 5(z — z,)6v(z,t) . (B.11)

Equation B.9 corresponds to equation 3.31 and equation B.11 corresponds to equation 3.28.

Linearized adjoint

Similarly, to do the adjoint operation, I first compute wavefield ¥ by solving the wave

equation
PY — AButp = —bu(z,,—t) (B.12)

followed by calculation of the integral

§p = /dtfu]) . (B.13)

Equation B.12 corresponds to the wave equation solution to 3.43 and equation B.13 cor-

responds to equation 3.36.

B.2.3 Algorithm

Introduction

In this section I will define the algorithm to compute the linearized forward and adjoint
operations. (Note that in my thesis I solve the nonlinear forward problem. I use the

linearized forward problem here only because it is required in the dot product test.)
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Definitions
I make use of the following definitions

L = (pOy — X3:;) = wave equation operator

and

W = window + interpolate a wavefield to get data at the recesver locations

The linearized forward problem

Using the definitions, the linearized forward problem becomes

Lu=f |,
Lév = u6p ,
bu = W bv

Putting these operations together we have mathematically that

bu = WL lasp

The linearized adjoint

(B.14)

. (B.15)

(B.16)

(B.17)

The linearized adjoint in terms of the wave equation and interpolation operators is

Lu=7f |,
§f = WT 6u
LT ¢ = 6f

bp = iy = 4y

Putting these operations together we have mathematically that

6p = u LT wT §u

’

(B.18)

(B.19)

which is clearly the adjoint of equation B.17 because @ = #7. Note that the transpose

wave equation program corresponding to LT can be obtained by reversing the order of the

time loop in the wave equation program corresponding to L.
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B.2.4 Pseudo code
The linearized forward problem

Some pseudo code to perform the forward equations given by B.16 using finite differences

to solve the wave equation is

bv = 0

dot=1,T{
6v22(t,z) = 3, (Az/2) % 8,(—Az/2) * dv(t, z)
doz=1,X{

bu(t,z) = 26v(t — 1,2) — Su(t — 2,2) + 826v,4(t, z) — (¢, z)6p(z)

bv = 0
dot=1,T({
doz=1,X{

doz' = -X' X'{
bu(t,z) = Su(t,z) + w(t,z,2')6v(t,z — z')

}

}

where 8;(Az/2) convolutional derivative operator centered at Az/2, s = (AAL%)/(Az?),

At is the time step and Az is the grid spacing in the finite differences (the 1D finite
difference stability criterion is s < 1).

The linearized adjoint problem

Similarly, some pseudo code to perform the adjoint equations given by B.18 is
5f =0
dot=1,T{
doz=1,X({
doz'=-X"X'{
6f(t,x) = 6f(t,z) + w(t,z,2')6u(t,z — z')
}



-181-

}

}

Y =0

bp = 0

dot="T,1{
dox=1,X{

V22 (t, ) = 3,(Az/2) * 8. (— Az /2) * Y(t, z)
Y(t,z) = 29(t + 1,z) — ¢(t+2,2) + sztbu(t,x) —-6f(t,z)
59(2) = 60(2) + Y1, 2)i(t, 2

B.2.5 Numerical test

Input data

Typical vectors used in the dot product test are illustrated in Figures B.1 through B.5.
They were obtained as described below.

X = 6p : random density perturbations.

X1 = &p; : random density perturbations (note that §py # 6p)

Y = Ax; = 6u: computed by modeling with density perturbations §p, = x;.

Ax= W L' & 6p: computed by modeling with density perturbations §p = x.

ATy = 4 L'T WT §u: the adjoint applied to displacement perturbations u = y.

Note that the background wavefield u(z,t), the perturbation wavefield 6v(z,t) and the
back-propagated residual wavefield 4(z,t) are shown in Figures B.6 through B.8 illustrat-
ing that the boundaries have been reached by the waves (hence, the dot product test is

also checking whether the boundary conditions are adjoint).

Dot product test

I performed a dot product test several times using different random input vectors x and x;

for some different cases to gain an understanding of the dot product precision parameter
€. ’
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Figure B.1: The density pertur-
bation vector §p = x.
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Figure B.4: The displacement
perturbation vector Ax.

Figure B.5: The adjoint vector
6p = ATx.

Figure B.6: The background
wavefield u(z,t).
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Figure B.7: The perturbation
wavefield §v(z,t).

Figure B.8: The back-propagated
residual wavefield ¢(z,t).
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Case 1: A small example (i.e. X = 10 and T = 40) using a two point derivative

operator in the finite difference scheme. Typical results of dot product tests are

y? Ax = 1.0000000

and

xT ATy = 1.0000005

The results indicate 7 figure precision implying a correct adjoint implementation.

Case 2: A big example (i.e. X = 100 and T = 400) using a two point derivative

operator in the finite difference scheme. Typical results of dot product tests are

y? Ax = 1.0000027

and

xT ATy = 1.0000000

These results indicate that there is some accumulation of roundoff when the problem is
bigger so the dot product test has less precision. Note by less precision I mean that the
dot product test has less precision (i.e. ¢ is larger) and not that the program contains

bugs. This is clear because the small example presented in case 1 had a precision equal to

computer accuracy.

Case 3: Same as case 2 but using the same eight point derivative operator as was used
in the 2D elastic finite difference program. Therefore, the value of ¢ here is approximately

the expected precision of a 2D elastic dot product test. Typical results of dot product
tests are
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yT Ax = 1.0000000 |,
and
xT ATy = 1.0000320

This 5 figure precision indicates that relative to the two-point derivative operator (case

2), the eight-point derivative operator causes a greater accumulation of roundoff.

Case 4: Same as case 3 but for the small sized 10x40 example (ie. X = 10 and
T = 40). Typical results of dot product tests are

yT Ax = 1.0000014

and

xT ATy = 1.0000000

The dot product test here has 6 figures of precision which is greater than the 5 figure
precision of case 3. This implies that the program using an eight-point operator is also
a correct adjoint implementation but with more accumulated roundoff than a two point
scheme (i.e. compare case 4 with case 1).

The conclusions so far are that there two factors affecting the dot product precision
parameter €). Namely, that an increase in the size and/or accumulation of roundoff in the

forward problem results in an increase in ¢.

Precision of dot product tests

The examples above indicated that there is considerable variation in the dot product
precision parameter & which is required to know whether or not a dot product test is
passed. The precision parameter is ideally computer precision (7 figures) when the size of
the problem is small. As the size increases, this precision parameter may increase by a
factor of 10. Another factor is how much roundoff is accumulated in the forward problem
(finite difference scheme). Ideally, a finite difference scheme attenuates the roundoff to

ensure stability but the different schemes can attenuate the roundoff at different rates.
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This variation could account for different precisions in dot product tests. The eight-point
scheme I use in the elastic inversions accumulates 10 times more roundoff than a two-point
scheme (note that this is not as bad as it seems considering the eight-point scheme can
use 1/4 the number grid-points per wavelength required by a two-point scheme to solve a

given problem).

B.3 2D elastic dot product test

B.3.1 Summary

Now I will check the implementation of the elastic adjoint operation (equations 3.48
through 3.50 and 3.59 through 3.61) using a dot product test. Recall that the dot product
test numerically checks that xT ATy = yTAx+e. Case 3 of the previous section indicated
that € for a small 2D example should be approximately 10~% provided the linearized for-
ward problem is done as it was in the 1D example. However, for ease of implementation,
I will do the linearized forward problem as the difference between two nonlinear problems
leading to 100 times less precision in the linearized forward problem. This results in a
dot product precision parameter of € = 1073. I achieve this expected precision in a dot
product test verifying that my adjoint implementation is correct (as well as can be tested

using this implementation of the linearized forward problem).

B.3.2 Linearized forward problem

The dot product test requires a linear forward operator A and its adjoint. In my elastic
inversion I use the nonlinear forward problem. This is because:

(i) I wish to solve the more difficult nonlinear inverse problem which requires the
nonlinear forward problem, and

(ii) the linearized forward problem involves the same kind of computations as the
nonlinear problem (see thesis equations 3.28 through 3.30 and drop the O? terms) so it is
not advantageous to program the linearized equations (i.e. the linear problem is the same
speed as the nonlinear problem).

" To do the dot product test without programming the linearized forward problem sepa-

rately, (i.e. without writing extra code that saves the background wavefield and applies a

forcing function according to thesis equations 3.29 and 3.30 but without the second order
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terms), I will do the linear forward problem by finite differencing the nonlinear forward

problem f(x), i.e.
(0f/3x)x = Ax = f(xo+x)—f(xo) + O*x) = Af + O%x)

I found that the velocity perturbations x must be less than about one percent of the
background velocity to ensure the O? terms are small.

Figure B.9 was computed using the elastic finite difference program and Figure B.10
is a plot of the same data as Figure B.9 but at 1/1000-th the clip. Random noise can be
seen at the bottom of the time axis in Figure B.10. Thus, the linearized forward problem
is accurate to about three figures. Note that the forward problem f(x) has a direct wave
that is about 100 times stronger than the reflections shown in Figure B.9 so my finite
difference method to calculate f(xo) has five figure accuracy as expected from case 3 of

the previous section.
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B.3.3 Numerical result

Several random P-wave velocity, S-wave velocity and density models were generated on a
40x40 grid. They were filtered to the seismic bandwidth and used in dot product tests
in the same manner as was done for the 1D tests in the previous section. A typical dot

product result

xTATy = 1.0036

’

yTAx = 1.0000

Therefore, considering the precision parameter for the elastic dot product test is about
1073, the dot product test is passed and the adjoint implementation is verified. This is
not an accurate verification because the linearized forward problem has only three figure
precision. However, the dot product test does say that the level of noise in the gradient
due to an inaccurate implementation is at most 10~3. This is easily adequate for inversions

of real seismic data which typically contain seismic noise levels around 50% or more.

B.4 Conclusions

The dot product test is the numerical equivalent of the mathematical definition of an
adjoint and is useful to check adjoint implementations. Tests using a 1D constant velocity

acoustic program show the dot product test has a precision parameter related to the level
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of accumulated roundoff in the forward problem. This parameter depends on the size of
the forward problem as well as the details of the calculations.

The implementation of the linearized elastic forward problem used to test the 2D elastic
adjoint operation has a roundoff noise level of 103 implying an expected dot-product
precision of 1073, A numerical test verifies that the elastic adjoint implementation passes
the dot product test to the expected precision. This 10~3 precision implies that the
implementation noise in the adjoint can be at a level no greater than 1073, This is well
below the usual 50% seismic noise level so, from a practical standpoint, this dot product

test is a satisfactory verification of the adjoint implementation.



