Chapter 5

Solution to the low wavenumber

problem

5.1 Overview

The previous chapter illustrated the elastic inversion algorithm using synthetic and field
data inversions. One conclusion was that the low-wavenumber components of the velocity
converged slowly when inverting reflection seismic data suggesting low wavenumbers were
pooly resolved. This chapter proves that the low wavenumbers can be resolved and suggests
how to speed their convergence to match that of the high-wavenumbers. I restrict the
development to the acoustic case to simplify the mathematics. All concepts and conclusions
apply to the elastic case as could be seen by replacing acoustic Green’s functions with
elastic Green’s functions.

The inversion algorithm given in chapter 3 is equivalent to doing an iterative migration
and diffraction tomography simultaneously. Diffraction tomography and inversion work
best when sources and receivers surround the region of interest, as in medical imaging
applications. Typical analyses of inversions using seismic reflection data indicate that the
high vertical wavenumber velocity perturbations should be resolvable while low wavenum-
bers should be unresolvable. Therefore, it was thought that the low vertical wavenumbers
had to be supplied to inversions using a separate step such as a velocity analysis or re-
flection tomography (as was done in the previous chapter). In this chapter, I will show
that the iterative elastic inversion obtains all wavenumbers that are resolvable separately

by velocity analysis, migration and reflection tomography. Reflectors in the background
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model simulate sources and receivers within the Earth so the source and receiver coverage
in seismic reflection inverse problems is effectively the same as in medical imaging. Some
synthetic examples verify the theoretical predictions and show that reflector locations and

interval velocities can be obtained simultaneously.

5.2 What is the low wavenumber problem?

5.2.1 The problem

Typical analyses of the seismic inverse problem with sources and geophones on the Earth’s
surface show that the velocity image will only be partially reconstructed (Devaney, 1984;
Devaney and Beylkin, 1984; Esmersoy et al., 1985; Esmersoy and Levy, 1986; Wu and
Toksoz, 1987). In particular, only the high vertical wavenumbers are resolved and inversion
results look like migration results and do not resolve, but rather require, a smooth (low-

wavenumber) velocity model (Mora, 1987c).

5.2.2 The problem with the problem

However, it is well known that routine velocity analysis and reflection tomography make
use of the shapes of reflection hyperbolas to obtain the low-wavenumber velocity model, so
the low-wavenumber information is contained in the seismic wavefield. Why does it seem
that inversion fails to obtain the low wavenumbers? This question is especially perplexing
considering inversion purports to obtain a velocity model that generates synthetic data

that best matches the observed seismic wavefield including the hyperbola shapes.

5.2.3 Resolution of the problem through assumptions

Before answering the question of the apparently unresolvable low-wavenumbers, first re-
call that velocity analysis and tomography both make specific assumptions that enable
them to resolve the low wavenumber information. For instance, velocity analysis assumes
flat reflectors (and straight rays => small offsets) and tomography often makes specific

assumptions about the reflectors (for example that the reflectors have been identified or

that reflectors are flat or continuous).
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5.2.4 Resolution of the problem through inversion in principle

An inversion that best matches the observed seismic wavefield to a synthetic wavefield
should obtain all wavenumber components in a velocity model. To account for the shapes
of reflection hyperbolas, the low-wavenumber velocity model must be correct. To account
for reflection amplitudes the high-wavenumber velocity model must be correct. What is
the problem with the analyses indicating that these low wavenumbers cannot be obtained?

Or is it a problem in the inversion algorithms themselves?

5.2.5 Resolution and understanding through analysis

An analysis of an acoustic inversion using a non-constant background model containing a
deep reflecting interface shows that all wavenumbers can be resolved up to some maximum
value. This value depends on the maximum frequency in the seismic wavelet. Therefore,
provided the inversion assumes a background model that is non-constant and contains the
reflector locations, the inversion is capable of resolving all wavenumbers. Considering the
first iteration of an iterative inversion locates the reflectors, it is not really necessary to
know the reflector locations a priori. Consequently, an sterative inversion that allows both
the high- and low-wavenumber components of the background model to vary is a complete
inversion. In other words, it resolves both reflector locations as well as interval velocities
simultaneously. Although the analysis is done for the inversion algorithm restricted to an
acoustic medium, the same conclusion applies to elastic waves. Green’s functions would
be elastic rather than acoustic in the development and P- and S-wave interval velocities

and reflector locations would be obtained.

5.3 Are the low wavenumbers resolvable?

5.3.1 Insights from pictures

The chapter on elastic inversion theory showed some pictures describing how the least
squares gradient direction was computed. Two wave simulations were required, a for-
ward simulation to model waves in the current estimate of the Earth model and a back
propagation of the data residuals.

The pictures illustrating inversion of transmission data showed that the two wave

simulations contained waves traveling in the same direction and interval velocities were
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resolved. The inversion behaved like a wave-equation tomography! However, the pictures
illustrating inversion of reflection data showed that when the two wavefields contained
waves traveling in the opposite directions, only the reflectivities were resolved. But both
wavefields were computed using the two-way elastic wave equation and thus contained both
upgoing and downgoing waves. This suggests that even inversions using only reflection data

may be able to resolve interval velocities. This chapter elaborates on this theme.

5.3.2 Non-constant background scattering

I will assume the simplest wave equation, the acoustic wave equation, to simplify algebra.
This enables one to focus on the main problem of obtaining high- and low-wavenumber
velocity models simultaneously. Of course, all the concepts apply equally well to the full
anisotropic elastic wave equation.

Consider the basic plane wave experiment in Figure 5.1.

source/geophone surface

incident waves scattered waves

reflector

Figure 5.1: Basic plane wave experiment showing plane waves incident on a velocity
anomaly embedded in a layer over a halfspace.
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A plane wave is incident on a deep anomalous region and a geophone line is located
along an absorbing Earth’s surface. I assume an absorbing boundary condition to focus the
readers attention on primary reflections which I will demonstrate can be used to obtain the
low wavenumbers. A simple non-constant background velocity is assumed, namely a layer
over a halfspace. It is the presence of the layer-halfspace reflection that enables the low
wavenumbers in the velocity anomaly to be resolved in an inversion. This is comparable to
the case of reflection tomography but, as we will see in the example, locations of reflectors
can be determined by the inversion and are therefore not required a priori.

The following is a derivation of the scattering formulas relating the scattered field to the
spectrum of the velocity anomaly (see Wu and Toksoz (1987) for the constant background
velocity derivation).

For monochromatic waves, the constant-density acoustic wave equation is

Viu(r,.r) + W, ru,r) = f&) (5.1)
where u({a, I) is the scalar quantity of the wavefield at position I, (such as the pressure),
w is the angular frequency, f (5‘) is the source function at frequency w, x, is the source
position, and W (r) is the squared slowness (i.e. W(r) = 1/v?(r) where v(r) is the
velocity of acoustic wave propagation). Defining the squared slowness field in the layer to
be a background Wo(r) = 1/v(x) plus some perturbation §W (r),

W) = W)l + W) 5.2
and defining the wavenumber £ = w/vo(r) we obtain
Viu(r,.r) + Kulr,.r) = ~F*W(tu(r x) + flx,) - (5.3)

Now, by defining the wavefield u(;;‘, r) in terms of the wavefield in the unperturbed
medium uo(r_,x) as

u(r,,k) = wlL,,x)+6u(,,r) (5.4)
and applying the Born approximation, namely that higher order terms can be neglected,
and applying equation (5.1) yields

2
| Visu(r,,x) + k'u(r,.x) = —k*6W(t)u(r,r) - (5.5)
The solution to this equation in terms of the acoustic wave equation Green’s functions for

the medium G(r',r) is

bu(x,x) = /V K6W (£ )uo(x ,£ )G (x',£)dr! (5.6)
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= [ Bow@)ol, 2ok e - (5.7
So far the discussion has been valid for sources located without restriction at E, and

geophones at r. Now, restricting the sources and geophones to be located on the Earth’s

surface yields

bulen,z) = [ KW (£)G(enE)f )Gz m)de - (5.8)

Note that the Green’s functions obey reciprocity between source and geophones, namely

that G(r',x) = G(r,r'). Fourier transforming over the source location z, and geophone
location z, yields

Si(kiky) = [ KW (0)G(k,2) (k) (ks E)E (5.9)

So far the development assumed nothing about the Green’s functions and hence nothing
about the background medium Wo(r). Now, I will assume the simplest inhomogeneous
non-smooth background medium, namely a layer over a halfspace. Furthermore, I will
assume the anomaly region is above the interface between the layer and halfspace (see
Figure 5.1). In that case, the approximate Green’s functions for the background medium

are

G(ksx) = G*(kpx) + G~ (k,,x)

= SR o irgtop) 4 2(k) LRI ik ey L (s0)
2 Vs ~ ~ 2 Ya ~ ~
and
é(kﬂ’.!:) = é+(ky:£) + é_(kaa};)
. » d+ . . d_
= E(kﬂ).;_.eﬁ_(ﬂg—y) exp(—iké'*' .£) + %ex—p(’l!_) exp(_"kg_ .L) , (5'11)
’79 ~ 7’ ~

where § and g are the unit vectors pointing along the direction of wave propagation away
from the orign towards the source and geophone locations, to the source and geophone
locations respectively and d, and d, are the vertical distances between the origin and the
source and geophone lines (the Earth’s surface). The superscripts on the Green’s functions
denote whether the waves are downgoing (+) or upgoing (—) at the origin. The vertical
distances traveled by the waves corresponding to each Green’s function are denoted d. For
instance, d} is the vertical distance from the source line to the origin (i.e. the anomaly

" depth) and d; is the vertical distance down to the layer-halfspace interface and back up to
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the origin. Specifically, from Figure 5.1, d} = 20, d; = 221— 29, d} = 221—20, and d; = z.
Similarly, § * is the unit vector that points toward the source along a ray that travels in
the positive depth direction (downward) while §~ is the unit vector that points toward
the source along a ray that travels in the negative depth direction (upward). Thus, the I
corresponds to the source end of the S~ or S~ raypaths shown in Figure 5.2. Likewise,
§+ and ~g‘ are unit vectors pointing along the two raypaths between the geophones and

the origin. The vertical wavenumbers denoted «, and ~, are specified by

de = k2 — k2, (5.12)

and

and (k') is the reflection coefficient of the layer-halfspace interface for an angle of inci-
dence corresponding to wavenumber k and horizontal (shot or geophone axis) wavenumber
k'. Notice that waves can travel from the source to the anomaly and then either go up
to the geophones or go down to the reflector to be reflected back up to the geophones.
These two alternate paths from the anomaly to the geophones are included as two terms
in the geophone Green’s function G (kg,xr). Similarly, the source Green’s function é(k,, r)
describing how waves can get from the source to the anomaly has two components.

The Green’s functions are approximate because higher order terms that represent re-
verberations have been excluded. Also, the sources and geophones were assumed to be
located along an absorbing surface whereas the Earth’s surface is free resulting in strong
multiple scattering terms. Neither of these approximations detract from the following anal-
ysis which is simply intended to show that tomographic terms are included in inversion
provided the background model generates reflections.

Substituting the approximate Green’s functions into equation (5.9) yields the equation

for the perturbations of the field variable in terms of the squared slowness anomaly



-92.

bu(ky, k) =

exp(i7sd] +i7,d;) fy W (r) exp[—ik(8* + §7) - x]dr

_ Fk)R? ) +&(kg)E(ka) exp(ivady + ivgd]) fy 6W (r) exp[-ik(§ ™ + g*) - xldr
4157 + &(kg) exp(ivady +i7,d5) fyy W (r) exp[~ik(§* + §*) - x]dr

+ &(k.) exp(ived; +i7,d]) fy 6W (r) exp|—ik(§ ™ +87)-rldr

=St 4+ 8§t + gttt 4 57, (5.14)

Note that there are four scattering terms in this expression are denoted respectively S+,
S~*, S** and S~. Figure 5.2 shows the corresponding raypaths and illustrates the
meaning of the superscripts.

The first two terms are the reflection scattering terms. It is these that lead to the
resolution of high vertical wavenumbers in the inversion formulas for squared slowness.

In a homogeneous background there would only be one term, the S*~ term. This term
corresponds to waves that travel down from the source and are scattered by the velocity
anomaly back up to the geophones. Therefore, it represents scattering from waves incident
from above. Notice that the presence of the deeper reflector has introduced three other
terms.

The S~ term corresponds to waves that travel down from the source, reflect up from
the layer-halfspace interface, are downward scattered (reflected) from the anomaly back
to the interface and are then reflected back up to the geophones.

These last two terms are the transmission scattering terms. It is these that lead to the
resolution of the low vertical wavenumbers in the inversion formulas for squared slowness.

The S** term corresponds to waves that travel down from the source, are downward
scattered (transmitted) through the anomaly to the interface and then reflected back up
to the geophones.

Similarly, the S~ term corresponds to waves that travel down from the source, are re-

flected back up from the layer-halfspace interface and then upward scattered (transmitted)
through the anomaly to the geophones.
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In other words, the St~ and S—* terms will lead to migration-like terms in the in-
version formulas while the S** and S~~ terms will lead to reflection tomography-like
terms. St~ yields the usual migration term, S corresponds to back-scattering of waves
incident on the anomaly from below so it yields an underside imaging term, and S+t
and S~ correspond to transmission scattering and thus yield tomographic terms. Mora
(1987b) gave the corresponding four terms for the case of elastic inversion and suggested
how to use these terms to simultaneously resolve both the high and low wavenumbers in

the velocity model.

source
. S§—=§t- s+ sT+

Figure 5.2: Raypaths corresponding to the four different scattering terms. The first su-
perscript refers to the incident ray direction while the second superscript refers to the
scattered ray direction (+ is downward and — is upward). For example, S~ has a down-
going incident ray and an upgoing scattered ray.
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5.3.3 Non-constant background inversion

Equation (5.14) can be written as

f(k.)k2C(8)C (-8
Sii(ks, k) = — (k) 4%(;) 8 explivs Ds(§) + 47, Dyg)] x

/ 5W (x)exp|—ik(§ + &) -rldr . (5.15)
V ~

Now there appears to be only one term because 8 and g span 360 degrees while previously
the § + 87, &% and g~ vectors only spanned 180 degrees each. For convenience, I have

lumped together reflection coefficient terms like Z(k') into C(§) and C(~g). Similarly, dr
and d, were included in D, and d;" and d; in D,. For example,

D(&) dr when g corresponds to a downgoing ray (5.16)
§) = .
d; when § corresponds to an upgoing ray

Therefore, equation (5.15) can be considered to be a generic term of equation (5.14). Three
dimensional Fourier transformation of equation (5.15) yields the equation for the squared

slowness anomaly in terms of the perturbation in the wavefield

X A ~ ~ 4737ﬂ . Y ~
W k(g+8)] = —6u(k,, ky) = exp 1 —s|VsD,(8) + 4,D . (5.17
gl = —oilk k) 2oy P L@ + D))} - (1)
Note that I assumed that C(¢) # O for all directions é and f(k,) # O (i.e. the reflection
coefficient and source strength are both non-zero for all wavenumbers). Normally, one
would apply a small damping term to the denominator to stabilize the solution. Hence,

zero’s in the source or reflection coefficient at a given wavenumber would result in holes

in the wavenumber spectrum for squared slowness.

5.3.4 The resolved wavenumber spectrum

Equation (5.17) relates one plane wave component in the wavenumber spectrum in squared
slowness to the wavenumbers of the acoustic waves along the source and geophone axes.
Consider the single frequency experiment where the frequency of the source w is fixed so
the length of the vectors k§ and k’g are constant. Now both § and g span 360 degrees
thanks to the reflecting interface between the layer and halfspace (if the interface were

not present then we would only have the S*~ term and 8 and g would only span 180
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degrees). If we fix § and let g span 360 degrees then a circular zone will be resolved in
the wavenumber spectrum of the squared slowness (Figure 5.3).

Now, by letting the source vector 8 range from O to 360 degrees, the entire wavenumber
spectrum of the squared slowness will be resolved up to some maximum depending on the

frequency w (Figure 5.4).

k:
L 3
kg
S kz

Figure 5.3: The part of the wavenumber spectrum of the squared slowness model that can
be resolved using a single plane wave source.

k2

Figure 5.4: The part of the wavenumber spectrum of the squared slowness that can be
resolved using a point source (i.e. a sum of plane waves at all angles).
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Consequently, when sources and geophones are located on the Earth’s surface, a sin-
gle frequency seismic source will resolve the entire wavenumber spectrum of the squared
slowness up to a maximum value of 2w/vg.

To see in detail how the entire squared slowness spectrum is resolved and how the non-
constant background relates to the constant background case, I will divide the spectrum
into four components. These are derived from the four terms of equation (5.14). Thus,

equation (5.17) can be written as the sum of four inversion terms

Wk(E+g) = I''™ + I't + 't 4 I

exp[—i(7sd} + 74d;)]
= (ke ky) ol | T z—(k—')lf(k—,)'expl'—i(%d.- +75d)]
f(ks)k? + 5—(,1—05 exp[—i(v.d} + '7,d;')]
+ gk X[ (vady + 7,47)]

2
— 56(’55; kg) 4'7,’7, ~ s s e 5 .
T f(R)E (C@)C(—g)) G*(ks k(& + 8))G" (k. k(€ +2)) .  (5.19)

where the asterisk denotes conjugate transpose. The division by ?(k.) is deconvolution to
remove the source signature and the division of some terms by reflection coefficients allows
for the strength of the deeper reflection. As in equation (5.14), the vectors § +, 8, gt
and 5_ span 180 degrees each. The first term, the I*~ term is the usual homogeneo~us
background term. The part of the squared slowness spectrum resolved by this term is
shown in Figure 5.5 (a). It was evaluated at a single frequency w by letting the vectors
8 * and g' span through the appropriate 180 degree ranges and using symmetry (c.f.
Figure 5.4 where § and g both spanned 360 degrees). I also assumed that the velocities
were real so there are some symmetry constraints to the wavenumber spectrum (see also
Wu and Toksdz (1987)). Similarly, the spectra resolved by the other three terms are also

shown in Figure 5.5.

Clearly, the usual homogeneous background term (the I*~ term) leaves big holes in the
spectrum, particularly in the low vertical wavenumbers. The three extra inhomogeneous

background terms fill the rest of the spectrum. In particular, the I*t* and 1=~ terms
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4

— kg

Figure 5.5: (a) The part of the wavenumber spectrum of squared slowness that can be
resolved from the I*~ inversion term (i.e. the usual imaging term). This is the same as
Wu and Toksoz (1987), Figure 12 (a), except that their spectrum was for a wide-band
source rather than a single frequency. This is identical to the part of the wavenumber
spectrum of squared slowness that can be resolved from the I-* inversion term (i.e. the
underside imaging term).

Figure 5.5: (b) The part of the wavenumber spectrum of squared slowness that can be
resolved from the I** inversion term (i.e. the downward path tomographic term). This is
identical to the part of the wavenumber spectrum of squared slowness that can be resolved
from the I™~ inversion term (i.e. the upward path tomographic term).
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fill in the low vertical wavenumbers. Furthermore, the It~ term is the inverse reflection
scattering term for waves incident from above while the I~* term is the inverse reflection
scattering term for waves incident from below. Similarly, the It* term is the inverse
transmission scattering term for waves incident from above while the I~ term is the
inverse transmission scattering term for waves incident from below (see Figure 5.2 for a ray
diagram of the corresponding four scattering terms). Note that I*~ and I~ resolve the
same part of the wavenumber spectrum. Two holes are in this spectrum in exactly in the
place where I*+ and I~ are resolved. Figure 5.5 illustrates the complimentary nature of

the I*~ and I~* migration-like terms with the I*+ and I~~ reflection tomography terms.

5.3.5 The tomographic terms revealed

To illustrate the four inversion terms when the reflector depth is known, consider an
inversion of the synthetic data shown in Figure 5.6. It was generated by modeling through

a circular velocity anomaly embedded in a layer over a halfspace (Figure 5.7 (a) ).

Location (km)

0 1 2
(=
Figure 5.6: Shot gather gener- o
ated from the model shown in g ;
Figure 5.7 (a). _ . il NS f
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\u-,’ :« I&: (..‘.. — ﬂ))\z‘ {{{
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The source wavelet was missing both high and low frequencies being a fourth derivative
of a Gaussian curve. An iterative inversion to solve for the velocities was carried out (i.e.
equation (5.18) was evaluated). The initial model used in the inversion was a layer over a
halfspace. This model was identical with the model that was used to generate the synthetic
data except that the circular anomaly was missing from the upper layer. The inversion
result (Figure 5.7 (b) ) contains the circular anomaly and two weak V shaped features

roughly emanating from the source location at zero km and passing through the velocity



Figure 5.7: (a) The true model
corresponding to the synthetic
data shown in Figure 5.6. Black
depicts a negative perturbation
and white a positive pertur-
bation relative to the acoustic
impedance in the upper layer.
The velocity perturbation of the
circular region relative to the
layer velocity was 10%.

Figure 5.7: (b) Ten iteration
inversion result. The starting
model was a layer over a halfs-
pace that was identical to the true
model except that that the cir-
cular velocity anomaly was not
present.
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anomaly. These V’s are the contributions from the tomographic terms I** and I~~ and
look like the ray trajectories for the transmission scattering terms S*+ and S~ shown in
Figure 5.2. The migration terms I*~ and I~ have sharpened the outline of the circle and
slightly repositioned the deeper reflector. The repositioning is seen as a flat event in the
inversion result shown in Figure 5.7 (b). If many shot gathers were used in the inversion,
the velocity anomaly would have been illuminated from many different directions (just like
the human body in medical imaging). Hence a more complete picture (without V’s) would
be obtained as will be seen in the following example. Only one shot gather was used in this
inversion to illustrate the effects of the four different inversion terms. Also, the reflector
depth was supplied (i.e. the initial inhomogeneous background velocity consisted of the
true layer over the halfspace). The following examples show that iterative inversions do

not require knowledge of reflector depth.

5.3.6 Relationship to iterative inversion

Now consider the elastic inversion algorithm derived in Chapter 3. It performs an elastic
inversion by conjugate gradient iterations. I will restrict the formulas to the constant
density acoustic case (shear velocities equal to zero and density fixed) to simplify the
interpretation of the results. The algorithm is based on the elastic wave equation. It
attempts to match an observed wavefield with a synthetic wavefield generated by modeling
through some velocity model. When the match between the two wavefields is good then
the algorithm has converged to the most probable velocity model under the assumptions of
least squares (i.e. Gaussian errors in the data and Gaussian distributed velocities). From
equation 3.59, the P-wave velocity perturbation at the (n + 1)-th iteration §v™*!(r) in

terms of the data perturbation at the n-th iteration 6u™(z,,t) = uf(z;,t) — uobs(zy,t) is

surti(r) o 37 / dt [VIG™(,,5,t) * (20, )][D VEG™ (24,5, ~1) * 6u™(24, 7,,1)] + e,
(5.19)

where u,p,(z,,t) is the observed seismic data and * denotes convolution over time, u(r) =
V- U(r) where U(r) is the displacement vector and € = C,}(v, — vp) is a damping term.
Equation (5.19) is applied iteratively in a conjugate gradient algorithm until the data per-
turbation is minimized. At this point, synthetic data generated from the velocity model
best matches the observed data un,(z,,t). For small velocity perturbations and no damp-

ing, the iterative time-space domain expression given by equation (5.19) yields exactly
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the same solution the frequency-wavenumber domain expression given by equation (5.18).
This is easily seen by integrating equation (5.18) over the data space (sources, geophones

and frequency) and inverse transforming to the time-space domain

BW(E) & 03 [Glenk, ~1) # 171 a,t) % Gy, 2, —1) * Sulz, 20,1)]

t=0

= E / dt[é(z”.-l:,’t) * f_l(zht)][zé(zﬂ’zn _t) * 5“(18’ zﬂ’t)] ’ (5‘20)

where

. G V't cos(0)G (5.21)

is a normalized Green’s function in two dimensions and @ is the angle of wave propa-
gation. Clearly, when restricted to the acoustic case, the equations given in the chapter
on elastic inversion theory and rewritten in equation (5.19) are the almost the same as the

inversion formulas given in equation (5.20). Differences are:

(i) The Green’s functions have been scaled differently because v/t = divergence correction #
1/|G| except if incidence angles are small (i.e. cos(8) = 1) and the velocity model is

homogeneous (i.e. has no reflectors) so C is unity.

(ii) There is a convolution in equation (5.19) with the source wavelet whereas there is a

deconvolution with the source wavelet in equation (5.20),

(iii) Equation (5.19) has a damping term and is applied iteratively.
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The conjugate gradient iterations ensure that the synthetic data matches the observed
data and hence correct for these differences. To speed the convergence of the iterations, one
could easily enough deconvolve rather than convolve with the source wavelet and rescale
the Green’s functions. In particular, one could allow for the reflection strength by dividing
equation (5.19) by the C factor as was done in equation (5.20). Mora (1987b) described

this concept and in particular observed that

§o™l = [T+ I+ T+ ] ~ [T+ O[T+ ) 4 e

= [migration — like terms] 4 [reflection — tomographic — like terms] + [damping term)]

(5.22)

leading to the conclusion that the convergence could be sped up by boosting the
reflection-tomographic terms (i.e. J** and J~~). Clearly, the boost factor should be
about equal to the inverse of the reflection coefficient at a representative angle of inci-

dence denoted C. Specifically, use in the iterative formula

H

(5.23)

so™1 = [ 4+ -C—l';J"*] + —é—[J‘H + I e m 20T 4 -é—[J"’* P

where I assumed that J=t s J*~ because J~* supplies about the same information
as J*~ (Figure 5.5). Note that the reflector in the following example is strong so it was
not necessary to boost the tomographic terms to achieve rapid convergence.

One crucial observation is that J*~, J** and J~~ all have the same percentage noise
because they are all computed by back propagating the same noisy data residuals. There-
fore, the proposed boosting will not boost the level of noise. This fact could possibly have
been predicted intuitively considering the three terms are resolved by primary reflections
with the same signal to noise ratio. By comparison, the signal in the J~% term is a triple

scattered wave but the noise in the data is the same so it is inadvisable to boost this term

for fear of boosting noise.
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5.3.7 Tllustration of inversion
Inversion without deeper reflectors

Both of the following examples used a fourth derivative of a Gaussian curve as the source
wavelet. This is a narrow-band wavelet that is missing both low and high frequencies.
Therefore, there can be no question as to whether or not low wavenumbers present in the
inversion solutions result from low frequencies in the source because there are none.
Figure 5.8 shows one of the five shot gathers used in the inversion and generated by

finite difference modeling over a circular anomaly embedded in a homogeneous halfspace
(Figure 5.9 (a) ).

Location (km)
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Figure 5.8: Shot gather gener- i
ated from the model shown in %
Figure 5.9 (a). &
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- There is no deep reflector (i.e. C = 0 in equation (5.22)) so that the inversion formula
given by equation (5.19) implicitly contains only the usual migration-like term (the It~
term). An inversion was performed using a homogeneous starting model. Figures 5.9 (b)

and 5.9 (c) shows the inversion result after one and fifteen iterations. The mismatch after
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fifteen iterations was small (about 12%) so the algorithm has largely, though not com-
pletely, converged. The fifteen-iteration result contains only high wavenumbers and looks
similar to a migration result (the first-iteration result). This is because the background

model was homogeneous and there were no deeper reflectors.

Inversion with deeper reflectors

Now consider the same model but with a strong deeper reflector. The starting model was
again homogeneous so the reflector location was not assumed to be known a priori. The
deep reflector is strong so no boosting of the reflection-tomographic terms was necessary
(see the description of boosting after equation (5.22)). One of the five shot gathers used
in the inversion is shown in Figure 5.10. The true model and the one- and fifteen-iteration

inversion results are in Figures 5.11 (a) through 5.11 (c).
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Figure 5.10: Shot gather gener- g
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The first-iteration result is the same as in the previous example except that the deeper
reflector has been imaged. However, after fifteen iterations, the circular anomaly region,
particularly its interval velocity, is better reconstructed and contains both high and low
wavenumbers (i.e. both its boundaries and its interval velocity have been found). In
other words, the interval velocity inside the circular region is now almost constant and the
circular anomaly located by the inversion has almost exactly the same appearance as the
true circular anomaly of Figure 5.11 (a). By comparison, the result shown in Figure 5.9 (c)
looked like a high pass filtered version of the true anomaly. One reason the anomaly is not

more perfectly reconstructed by the inversion is that fifteen iterations were not adequate
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for the conjugate gradient algorithm to completely converge. Also, there are small smear
artifacts due to the finite number of geophones (101 along the Earth’s surface) and sources

(five located every 0.5 km starting from 0.0 km).

Discussion

The initial model used in both the above examples was constant and had a velocity equal
to that of the upper layer in the true model. Therefore, the first iteration of the inversion
was similar to a migration to locate the reflectors. The first example had no deeper
reflectors so the three extra inhomogeneous terms did not come into play and only the
high wavenumbers could be resolved.

However, the second example had a deeper reflector. Once it was located by the first
iteration, the three extra terms (one migration and two reflection tomographic terms) dis-
cussed earlier had an effect in the inversion. These helped better reconstruct the underside
of the circular region (the I™* term of equation (5.18)) and the interval velocity (the I*+
and I~~ terms of equation (5.18)). Subsequent iterations adjusted the velocity model in
order to best match the wavefield computed from this model to the “observed” wavefield.
Both the reflector location and the interval velocity model were adjusted simultaneously

as the iterations proceeded.

5.3.8 Inversion = migration 4+ tomography

The examples illustrate that iterative inversion that updates the velocity model can obtain
both high and low wavenumbers in the velocity model. At least two iterations are necessary
to solve for the velocities if a smooth velocity model is used as the starting guess (i.e. no
a priori knowledge of reflector locations is assumed). The first iteration will locate the
reflectors and the second will solve for the interval velocities. Only two iterations are
required provided (i) the problem is linear (i.e. there are small velocity perturbations,
infinite offsets and Gaussian noise), and (ii) a Newton algorithm rather than a conjugate
gradient algorithm is used (i.e. 1/|G| is applied). Typically, velocity perturbations are not
so small and offsets are finite so the inverse problem is nonlinear. Consequently, more than
two iterations are usually required to obtain the complete solution even with a Newton
algorithm. Actually, it is often more efficient to use a conjugate gradient method and
iterate rather than a Newton method when the velocity model is complex. This is because

the inverse Hessian (or equivalently 1/|G|) required by the Newton algorithm is typically
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expensive to compute in comparison to some conjugate gradient iterations. Future research
will be required to investigate the utility of the low-wavenumber reflection tomographic
terms in the inversion formulas when gradient based inversion schemes are used. This is
especially true when many reflectors are present because the boosting factor required by
the tomographic terms becomes spatially variable.

The first iteration does an elastic depth migration paying heed to amplitude informa-
tion and thus locates the reflectors. If the velocity model is not correct, the positioning
of reflectors is also not correct. One may ask whether this would unduly affect the in-
version. Does the analysis remain valid considering that I assumed the reflector location
was exactly known? Would mispositioning of reflectors affect the ability of the algorithm
to resolve the low wavenumbers? Since the position of the reflectors is influenced by the
initial low-wavenumber velocity model, there is certainly some interaction between the low
and high wavenumbers.

Consider a single source and single geophone data. This data cannot resolve between
the depth of a reflector and the interval velocity down to that reflector (i.e. if traveltime t =
z/v is observed then we cannot differentiate between an increase in velocity v and a decrease
in depth 2). However, when the data corresponds to an experiment with several sources
and geophones, the shapes of the reflection events in the data helps distinguish interval
velocity from reflector depth. Also, as the number of illumination angles of waves passing
through the layer are increased, the resolution between depth and velocity increases. This
is why the example with five sources and 101 geophones converged to a good solution
even though the reflector depth was not specified. Hence, I conclude that while the low
and high wavenumbers do interact as the iterations proceed, they can be resolved from
one another if enough conjugate gradient iterations are performed. The iterations slowly
reposition the reflector(s) and update the interval velocities until the solution is obtained.

One further difficulty with inversion schemes is that they may converge to local min-
ima (on the squares error functional that measures the mismatch between observed and
synthetic data). This is avoided by starting with a velocity model that is close to the
solution. In my experience with seismic inversion, “close” means the initial velocity model
must describe the kinematics of wave propagation to within about a half a fundamental
wavelength of the seismic source wavelet. An initial inversion step (perhaps interpretive,
such as velocity analysis) is still required to obtain this starting velocity model.

The likelihood of a local minima is lessened when doing iterative inversion that vary the
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high- and low-wavenumber velocity model. This is because the velocity model can converge
on the low wavenumbers from the top of the model down as the iterations proceed. Thus,
throughout the iterations there will always be some uppermost portion of the model that
obeys the half a wavelength criterion. Consequently, provided the iterations are not too
expensive, it may not even be necessary to do the velocity analysis to perform a complete
inversion for all wavenumbers. Alternatively, Mora (1987d) suggested how to redefine the

objective function to be sensitive to the low wavenumbers and perhaps less nonlinear.

5.4 Conclusions

The elastic inversion formulas derived in Chapter 3 can find all wavenumbers in the velocity
spectrum (up to some maximum value depending on the maximum frequency in the source)
even when the seismic source wavelet is band-limited. In real problems, the inverse solution
would still be missing some parts of the wavenumber spectrum of the image because of
finite offsets ranges and finite numbers of sources (just like combined velocity analysis and
migration).

The inversion is like a combination of iterative migration and reflection tomography.
The high wavenumbers (the reflector model) are obtained by migration terms and the low
wavenumbers (the layer interval velocities) are found by diffraction tomography terms.
Both the reflector model and the interval velocities are obtained simultaneously and au-
tomatically in iterative wave equation inversion schemes.

The low wavenumbers can be reconstructed by my iterative elastic inversion scheme so
this method should constitute a “complete” inversion obtaining all resolvable wavenumbers
in the spectra of the elastic parameters. On a powerful computer such as a CRAY-3,
or highly parallel computer such as a Connection Machine (Hillis, 1986), these methods

may one day overtake in utility the efficient but partial solutions of velocity analysis and

migration.



