Appendix 1

Algorithm of two-pass phase-shift migration

First pass of conventional downward extrapolation

2-D Fourier transform of stacked section: P(t, z, =0) — P (w, k,)
For each step 7 = A7, 2A7, ..., Tyax :

{
For all k, :

{
Normal Image: N(k,,7) = O

For |w| > |k, | v :

{
P(w, k,) = P(w, k) X exp[~i wA7T /1 - (vk, /w)?

N(k.’ﬂ’ T) + P(w’ kz)

=
“?r'
2

||

1-D inverse Fourier transform : N(k,, 7) — N(z, 1)

}

Second pass of upward extrapolation

For each step 7 = 7., Tmax=AT, ..., AT:

{
For all £, :

{
Overturned Image: O (k,, 7) = O
For |k, |v <|w| <]k, | vpax:

{
P(w, k,) = P(w, k) X exp[~i wAT /1 — (vk, /w)?]

O(k,,7) = O(ky, )+ P(w, k)

1-D inverse Fourier transform : O (k,, 7) — O(z, 7)

}



Appendix 2

Ray tracing in constant-velocity-gradient media

In a medium with a constant velocity gradient, i.e., velocity defined by
v(z) = vo(l 4+ B2), (A-2-1)

rays travel along circular arcs (Slotnick, 1959). Figure A-2.1 shows the geometry of a
nonzero-offset recording. Normal reflections are obtained when the reflector angle « is
from 0 to 90 degrees, while overturned reflection modeling corresponds to an & between
90 and 180 degrees. The propagating angle 6 of a ray is defined as the angle between
the ray’s direction and the vertical axis. This angle # is between —180 and +180
degrees, and is positive when the ray travels to the right, negative when the ray travels

to the left.

0 8 x g surface

v(z):v0(1+ﬁ>z)

FIG. A-2.1. A nonzero-offset recording geometry. The angle 6; is the propagating angle
of the incident ray at the reflector, while 6, is the propagating angle of the reflecting
ray at the reflector.
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The underground position (z, z) through which a particular ray, with a given ini-
tial take-off angle 6, passes, and the arrival time of the ray at (z, z) follow (Li et al.,
1984):

r = s + vlﬁp [\/1—1)21)02 —\/1—p2v2(z)],and
0
(A-2-2)
1 (1+82) [1+ 1-p*v¢ ]
t = n ,
vof [l—i—\/l—p 20%z) ]
and
r = s + 1,8 [\/1—p2002 + \/l—pgv2(z)] , and
UopPP
- (A-2-3)
1 [1+ 1-p2v g ] [H—\/l—p 2112(,2)]
t = In y
Vol plugv(z)
where p = sin 6/v (2) = sin /v is the ray parameter, and s is the source position

on the z axis. Equation (A-2-2) is used if the ray reaches (z, 2 ) before it turns around

at its turning point (Li et al., 1984); otherwise equation (A-2-3) should be used.

The reflector’s position (z,, z,) corresponding to a given ray parameter

p = sin 6y/v, is obtained by solving the following system of equations:
T, = s + ” lﬂp [\/l—p i + \/1—p 20 d (1482, )2] , and
0
z, (A-2-4)
x, = .
tan o
The propagating angle of the reflecting ray at (z, ,z, ) is given by
6, = 180° - 2a -6, , (A-2-5)

where 0; can be determined by sin 0; = v (z,, z )sin 6y/v .

Having determined 6, , we obtain the ray parameter for the reflecting ray. Thus,
the receiver position and the travel time for the reflecting ray can be calculated by
equation (A-2-2) or (A-2-3), depending on whether the propagating angle of the ray at
the reflector position is larger or smaller than 90 degrees.

Figures A-2.2 and A-2.3 show recording geometries and travel-time curves for a

normal reflection and an overturned reflection, respectively. The ray-tracing results
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show that time-distance curves for normal reflections and overturned reflections have
opposite curvatures in common-shot gathers. The travel-time curve for the normal

reflection has a positive second derivative, while that for the overturned reflection is

negative.
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FIG. A-2.2. a. Recording geometry for normal reflections. The dip of the reflector « is
15 degrees. The water depth is 50 m and the water velocity is 1500 m/s. The sediment
velocity is given by v (z) = 1600(14.0002z ); the shot position is s = 500 m; and the
cable length is 1000 m. b. Travel-time curve of the normal reflections. The curve has
positive second derivatives, or curvatures.
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FIG. A-2.3. a. Recording geometry for overturned reflections. The dip of the reflector
a 15 105 degrees. The water depth is 50 m and the water velocity is 1500 m/sec. The
sediment velocity is given by v (z) = 1600(14.0022 ); the shot position is s = 500 m;
and the cable length is 1000 m. b. Travel-time curve of the normal reflections. The
curve has negative second derivatives, or curvatures.

The seismograms generated by the ray-tracing algorithm just described are calcu-
lated after scanning over some initial angles, 6y’s. The time-distance curve is not evenly
sampled over the horizontal axis (the geophone axis g ). To obtain a common-midpoint
gather, interpolation (e.g., spline interpolation) is necessary. Figure A-2.4 shows the
common-midpoint gathers for normal reflections and overturned reflections. Opposite

moveouts for normal and overturned reflections can be seen in the figure. The travel
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times of the overturned reflections in a common-midpoint gather decrease as the offsets

increase!
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FIG. A-24. a. Common-midpoint gather for normal reflections. b. Common-
midpoint gather for overturned reflections.



Appendix 3

Accuracy and stability of the 1-D
characteristic method

The one-dimensional upcoming wave equation can be written as
-~ 2 — o, (A-3-1)

where v is velocity, z depth, and ¢ time.
The leap-frog finite-difference approximation to equation (A-3-1) is
P(t, +At, z;) = P(t,-At, 2z;) + o [P (t, zj+Az)- P(t,, z;-Az)], (A-3-2)

where X = At /Az. This method is stable when A < 1 and is accurate to the second
orders of At and Az (Mitchell and Griffiths, 1980).

Applying the characteristic coordinate transformation

{§=t+z/v

n =1t¢t-z/v (A-3-3)
equation (A-3-1) can be transformed to
9P _ ), (A-3-4)
on
The finite-difference method is then
P(n,) = P(n.-An) = P(no) - (A-3-5)

Clearly, the finite-difference solution of the characteristic equation is exact and uncon-

ditionally stable.
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