Chapter 5

Prestack migration using the LITWEQ method

Although common-midpoint stacking (Mayne, 1962) has the advantage of improv-
ing signal-to-noise ratios and reducing data sizes before migration, it also has the disad-
vantage of averaging reflectivities over certain segments of reflectors when reflectors are
dipping, or when the earth is laterally inhomogeneous. This averaging of reflectivities
distorts pictures of underground structures, in particular obscuring details of
reflectivity changes so that analysis of seismic stratigraphy becomes difficult. Other
disadvantages of CMP stacking include data aliasing (of dipping and overturned
reflections) in CMP gathers, and high computer I/O expense for sorting CMP gathers.
To overcome these problems, prestack migration (i.e., imaging before stacking) (Claer-
bout, 1976; Jacobs, 1982) and partial prestack migration (i.e., dip-moveout) (Judson et

al., 1978; Hale, 1983) have been introduced in the seismic industry over the years.

As an application of the LITWEQ method, LITWEQ prestack profile migration
will be discussed in this chapter. Prospects for further applications of the LITWEQ

method also will be summarized.

§ 5.1 PROFILE MIGRATION USING THE LITWEQ METHOD

Forward modeling

Shot profile migration consists of matching a forward modeling of a downgoing
wavefield (generated by a given velocity and source model) with a backward extrapola-
tion of upcoming reflections (recorded at the earth’s surface). Consequently, LITWEQ
forward modeling is required only in the region enclosed by three lines:
ty=(t +7)/V2=tpu/V2 t; =1ty and t; — —t,, where ¢, is the maximum
record time and 7 is the pseudo-depth. The computation can be further reduced to the
region enclosed by ¢, == tmax/\/Q-, ty = Tymaz /\/5, ty =1ty and t; = —f, (see Figure
5.1), if the maximum pseudo-depth of the source is 7, . It is obvious that the com-

putation, when the source is at the surface (i.e., 7,,,,, = 0), is reduced to one-fourth of
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the computation for the LITWEQ two-way modeling described in section 4.3.
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FIG. 5.1. Computation grids for finite-difference LITWEQ forward modeling of down-
going waves in the (¢, {5) plane. The maximum depth of the source location is at
T = Tymaz - 1he source is denoted by S. For a surface source, 7,,,,, = 0, computation
can be reduced to those grids in the figure with t, < 0.

Backward extrapolation

With the wavefield P(z, t =t /V2, ty——~t /V/2) recorded at the earth’s surface,
the backward (in time) extrapolation of P(z, t, ¢,) in the LITWEQ coordinates is
carried out in the region enclosed by ty =t u/V2, to = Typme, /V2, t; = to and
t1 = —t4 (see Figure 5.2).

Because some reflections (dipping-bed reflections) in a seismic profile may come
from reflectors whose locations are outside the profile, some traces should be padded at
both sides of the profile before forward modeling and backward extrapolating, espe-
cially on the near-offset side. The number of traces that need to be padded depends on
both the angles of the dipping reflectors and the velocity distribution. In backward

extrapolation, to enhance the resolution of imaging it is better to pad seismic traces
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FIG. 5.2. Computation grids for finite-difference LITWEQ backward extrapolation of
upcoming reflections in the (¢, t4) plane. The surface data are denoted by d, ’s.

selected from other shot profiles, according to reciprocity of source and receiver, than
to pad traces of all zeros. However, interpolation between these padded traces is prob-

ably necessary unless receiver spacing is equal to an integer multiple of shot spacing.

Imaging by zero-lag cross-correlation

After the above two processes (forward modeling and backward extrapolation) are

completed, a migrated profile can be obtained by correlating the two separate

wavefields.

For any moment { at any underground position (z, z), the reflected wavefield
B(z, z,t) (the result of backward extrapolation) must be equal to the incident
wavefield F'(z, z, t) (the result of forward modeling) times the reflectivity C(z, z);

B(z,z,t) = F(z,2,t)C(z, z). (5.1)

Since the reflectivity is time-independent (the physical properties of the earth do

not change during the survey), C(z, z) can be estimated by the least-squares
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principle, giving

1 M B(z, z,1t)

C =
A2 = N B

(5.2)

where NT is the number of time samples per trace. This summation over the time
axis, to estimate reflectivity, enhances coherent images of primary reflections, while
suppressing incoherent noise. If a ray-tracing algorithm is used in computing the arrival
time ¢, the summation over the time axis should start from ¢ and end at ¢ + T,

where T, is the time duration of the seismic wavelet used in the survey.

Estimation of reflectivity using equation (5.2) is usually unstable because small
values of F(z, z,t) cause overflow problems in computation. Three other approxi-
mate, but feasible, estimates of C(xz, z) from time-dependent data B(z, z, t) and
F(z,z,t) are summarized as follows, analogously to Jacobs’ Fourier-domain esti-
mates (Jacobs, 1982):

NT
Ciz,2z) = 1 M W(z,z,i)B(z,z,it)F(z,z,1t), (5.3)
NT =,
1 NT
Colz,z) = ~NT > W(x,z,it)B(z, z, it)sign[F(z, z, it)], and (5.4)
it =1
1 .y Blz,z, it)F(z,z,it)
Caiz,z) = — Wiz, z, ¢ L L= , 5.5
o ) NTit2=1 ( ) | F(z,z,4t)|%+ € (5:5)
where €2 is a positive small number, W(z, z, t) is a weighting function depending on

both the geometric spreading of wave propagation and the reliability of computed
wavefields, and the sign function sign(z) equals +1 if 2 > 0, -1 if 2 < 0, and 0 if
z = 0. Estimation of reflectivity using equations (5.2)-(5.5) is simply a zero-lag cross-
correlation of the forward-modeled wavefield and the backward-extrapolated wavefield
with a certain weighting function. Experiments have shown that estimation using

equation (5.3) gives the best result with the least effort and is also the most robust one.

Estimate C; is equivalent to one of the conventional frequency-domain estimates
of reflectivity, because integrating B(¢)F(t) over ¢ is the same as integrating
B (w)F * (w) over w, where B (w) is the Fourier transform of B (t) and F *(w) is the con-

jugate of the Fourier transform of F (¢ ).
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Synthetic results

Figure 5.3a shows a shot profile before migration. The profile contains reflections
from two flat reflectors. The reflectors are well imaged in Figure 5.3b by LITWEQ
prestack migration. For flat-bed reflections, images will be obtained only on the near-
offset side of the profile, since the profile only records reflections from this half of the
section. Data-truncation effects due to limited offsets are likely to be seen on both sides
of the imaged reflectors (see Figure 5.3b). Data extrapolation (Claerbout, 1985) on both

sides of unmigrated profiles should suppress these truncation artifacts.
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FIG. 5.3. a. Synthetic shot profile of reflections from a three-layer model. The
thicknesses of the three layers are Ary =17 | A7y = 7 and A7y = oo. The velocities
are vy = 1.5, v = 2 and vz = 3. b. Migrated profile of the three-layer model.
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Figure 5.4 shows a profile migration of dipping reflections. After migration, a
pseudo-time-to-depth conversion is made to obtain the migrated depth section shown
in Figure 5.4b. Again, the result shows that LITWEQ prestack migration works prop-
erly.
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FIG. 5.4. a. Synthetic shot profile of reflections from a 45-degree dipping-fault-plane
model. The velocity above the fault plane is v; = 2, while the velocity below is
vy = 3. b. Migrated depth section of the fault plane. Data-truncation effects can be
seen at both sides of the imaged fault plane.

Field data results

LITWEQ prestack migration was applied to 56 shot gathers from the Gulf of
Mexico. The profiles contain both flat-bed and dipping-bed reflections. Figure 5.5a
shows one of the shot gathers. We will pay special attention to a fault-plane reflection
appearing at about 1.4 seconds on the nearest offset and at 1.3 seconds on the farthest
offset (marked by D in Figures 5.5a and 5.5b), and to multiple reflections appearing
below the primary reflection (marked by F) at 2.25 seconds on the nearest offset and

2.5 seconds on the farthest offset.
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FIG. 5.5. a. A shot gather from the Gulf of Mexico. Reflections from a dipping fault
plane can be seen at about 1.4 seconds at the nearest offset and at 1.3 seconds at the
farthest offset, as marked by D. Some multiple reflections after a strong flat-bed
reflection (marked by F ) at about 2.25 seconds at the nearest offset and at 2.5 seconds
at the farthest offset are present in the gather. b. Amplified display of a window of
the profile in Figure 5.5a. The reflection from a fault plane (dipping to the left) can be
seen clearly in the figure.
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Figure 5.6 shows the migrated version of the profile of Figure 5.5a. Flat reflectors
are all imaged well in the migrated section. Notice that the dipping fault plane is also
nicely imaged, with high resolution, and that the multiple reflections after the imaged
flat reflector at 1.1 seconds (pseudo-depth) are suppressed in the final section. Some
tilted events on the right-hand side of the final section are reflections from the sides of
computational grids. These boundary reflections are incoherent and hence will be
reduced when we finally stack different migrated profiles, though absorbing boundary

conditions should be able to suppress them.

§ 5.2 STACKING OF MIGRATED PROFILES

Each migrated profile provides a picture of a certain portion of the underground
structures being studied; these pictures usually overlap with adjacent ones if shot spac-
ing is less than half of maximum offsets (single-end spread) or half of cable length (split
spread). The images in different migrated profiles will be coherent, or aligned, if the
correct velocity function is used in the migration of all profiles. Stacking of these
coherent images certainly enhances the resolution of the underground structures, while
suppressing incoherent noise (reverberations and boundary reflections). Stacking is done
with the following formula:

NS .
Image(z, z) = Y, 0—1]3\;—??’;—)—,

18 =1

(5.6)

where NS is the number of shots in a survey line, and N (z ) is the number of ray cov-

erages in position z .

Five of the 56 migrated profiles mentioned in section 5.1 are displayed in Figure
5.7. The images of these migrated profiles are aligned exactly. Stacking over the 56
separate images offers a clearer picture of the underground structures (Figure 5.8) than
that provided by any individual migrated profile. Notice again that in Figure 5.8 the
dipping fault plane is well imaged, while the computational boundary reflections we

saw 1n Figure 5.5 are suppressed.
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FIG. 5.6. Migrated profile of the gather in Figure 5.5. The dipping fault plane E is

well imaged. The multiple reflections mentioned in Figure 5.5 have been suppressed in

the migrated profile, while the flat-bed reflection F above them is migrated to about

1.1 seconds of pseudo-depth.
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FIG. 5.7a. Migrated profile of shot gather s8.
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FIG. 5.7b. Migrated profile of shot gather s14.
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FIG. 5.7d. Migrated profile of shot gather s26.
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§ 5.3 VELOCITY INVERSION AND
EXTRAPOLATION OF MULTIPLE REFLECTIONS

Velocity analysis by maximizing stacking power

Stacking migrated profiles over shot axis s using equation (5.6) yields the max-
imum power when the velocities used in the migrations are correct. Therefore, scanning
through a range of velocities and maximizing the stacked power at a certain depth pro-
vides a method for picking the correct velocity at that depth. The same procedure can
then be carried out to estimate velocities for the next depth of interest by downward
extrapolating later arrivals through shallower depths using the known velocities
estimated earlier and scanning through certain ranges of velocities for the deeper part

of the section, until all velocities from the surface to the maximum depth of interest

are obtained.

Under the assumption of local lateral homogeneity and a flat-layered medium (as
in conventional velocity analysis from CMP gathers), velocity analysis of common-shot
gathers is as simple as conventional velocity analysis of CMP gathers, since similar
normal-moveout-correction formulas can be used, and we do not need to migrate and
then stack to estimate velocity. However, this approach will produce RMS velocities of
the earth instead of the interval velocities that can be obtained by the method of

migration and stacking.

When velocity varies laterally, the method of migration and stacking should be
used, though it is possible to apply moveout correction by ray tracing. Two
approaches to velocity inversion can be taken in the method of migration and stacking.
The first approach is to do constant-velocity migrations of all profiles and stacking, in
a way similar to Toldi’s scheme (Toldi, 1985) or Fowler’s scheme (Fowler, 1984). The
second approach is to invert velocity by perturbing the velocity model and iterating

profile migrations.

Imaging multiple reflections and other types of waves

As discussed in section 5.1, LITWEQ profile migration images underground struc-
tures by cross-correlating downward continued primaries and downgoing incident
waves, while suppressing incoherent noise, such as multiple reflections. If computations
of both the forward modeling and the backward extrapolation are done over the whole
rectangular region 0 < ¢ <t .. and 0 < 7 < 7., as is the case in two-way LITWEQ

modeling, then not only primary reflections but also multiple reflections may be
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migrated to the proper reflector positions and become coherent.

§5.4 3-D POSTSTACK MIGRATION

Three-dimensional migration has been used in the processing of seismic data, espe-
cially land data, for many years. With the development of supercomputers, such as the
Cray and the Convex, both the speed and the memory problems associated with 3-D

migration have become less severe than they were before.

We have seen how the LITWEQ method can be applied to 2-D wavefield extrapo-
lation. The same transformation as used in the 2-D LITWEQ method can be applied to
the 3-D acoustic wave equation, giving a 3-D LITWEQ method.

The 3-D acoustic wave equation is

2 2 2 2
or L OP P LIP (5.7)
oz oy 0z ve Ot

Transforming equation (5.7) with

! = 1,
'
=Y,
5.8
2! _\}?(z—vt),and 9
t! = %(z/v +t)

gives the resulting 3-D LITWEQ equation

a*p ?pP 2 9P
9 '2 + ayIQ +7 EPLETL = 0. (5.9)

Equation (5.9) is exact when the velocity is constant. A 3-D LITWEQ method for
a variable velocity medium can be derived similarly as the 2-D LITWEQ method for
that medium was derived in section 3.4. There will be some more terms (reverberation
and time-shifting terms) on the right-hand side of equation (5.9). To avoid redundancy
and to simplify the following discussion, we will assume that these terms are negligible
(the velocity gradient is small enough), so that equation (5.9) will also be valid for a
variable velocity medium. Incorporating these terms into the discussion is not difficult,

however (we did so in section 3.5).

There are several ways to implement the 3-D LITWEQ. The fastest and simplest
implementation on a vector machine is to migrate data in the (k,, k,, 2z, t') domain

when velocity changes only with depth, where k, and k, are Fourier duals of the
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horizontal coordinates z and y, respectively. However, in laterally inhomogeneous
media, the 3-D LITWEQ extrapolation has to be implemented in the (z,y, z’, t')

domain.

In laterally homogeneous media

When the velocity of medium can be regarded as a function of depth only, equa-

tion (5.9) can be transformed into the Fourier domain as

2 9°P
I T I A S 5.10
D R T (510
Equation (5.10) can be solved by the explicit finite-difference scheme used in the 2-D
(k,, z', t') LITWEQ migration, treating the term ( k,% + Icy2 ) in the 3-D migration

like k,2 in the 2-D migration.

Vectorization of scalar computation in a vector machine is difficult and relatively
inefficient when there is recursive computation inside computation loops. Therefore, an
implementation of equation (5.10) can take better advantage of a vector machine than
an implementation of equation (5.9), since no recursive computation is involved in
using equation (5.10).

Figure 5.9 shows an impulse response of a 3-D LITWEQ migration operator. The

input is a spike at (x =32, y =32, 2 =25). The impulse response is a hemisphere.

In laterally inhomogeneous media

When velocity is varying laterally, implementation of the 3-D LITWEQ in
(2, y', 2/, t') is needed. Both implicit and explicit finite-difference methods can be

used to implement equation (5.9).

For the implicit method, unknowns that are solved simultaneously in the 3-D case
lie on a plane, while unknowns in the 2-D case lie along a line. A matrix with a
bandwidth of (2n+1) needs to be solved at each step of 3-D extrapolation, where
n == min(nz, ny) (nz and ny are the numbers of computational points in the z
direction and the y direction, respectively). The huge memory required and the high
cost of solving this large matrix equation make the algorithm practically infeasible,
unless some splitting method is used. Other methods, such as the conjugate-gradient

method or the steepest-descent method, can also be used.

The splitting and the full-separation methods use split equations of wave equation
(5.9) to complete computation, even though their solutions are approximate when the

velocity is not constant. Equation (5.9) can be split into two equations:
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FIG. 5.9. Impulse response of 3-D LITWEQ migration. The input is a single spike at
position (z =32, y =32, z =25).

o°p 1 0%
dx 2 v 0z'0t!

— 0, (5.11)

and

o°p 1 _9°P
dy'? v dz'ot!

= 0. (5.12)

The splitting methods (Claerbout, 1976; Botha and Pinder, 1983) solve equation
(5.9) by alternatively solving equation (5.11) and equation (5.12) at each step of extra-
polation in (2, ¢t'). Hence, the well-known implicit scheme for 2-D migration can be
used in this approach. Splitting equations more accurate than equations (5.11) and
(5.12) can be used to obtain higher accuracy at higher computational cost (Mitchell and
Griffiths, 1980).

By using the full-separation method (Mitchell and Griffiths, 1980; Claerbout
,1985), we can solve equation (5.9) by solving equation (5.11) for all steps in (2/, t')
first, and then solving equation (5.12) again in (z', ¢'). This method requires the velo-
city of medium to be constant. Errors will occur in this method when the velocity

varies spatially.
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Both the splitting and the full-separation methods use recursive computation
when the implicit scheme is used. Recursive computation greatly reduces the efficiency

of optimization and vectorization of scalar computation by vector computers.

More about the 2-D LITWEQ transformation

We can also transform the 2-D acoustic wave equation with

' = z +z 4+ V2ut
2! = 2 +2 V20t ,and (5.12)

t! = ——vl(—:l: + )+ Vet

resulting in the equation

%P 1 9%P 1 8%P
2 - = — = 0 5.13
ox'dz’ v 9z'dt! + v 0z'at! ’ ( )

which can use a compact, eight-point, finite-differencing star pattern to solve the equa-

tion.

§ 5.4 SUMMARY

The LITWEQ wavefield extrapolation method can be applied to prestack migra-
tion of seismic data. Both the problem of extrapolating steeply dipping reflections and
that of handling lateral inhomogeneity can be solved by the LITWEQ method. Further
applications of the LITWEQ method can be expected in seismic inversion, multiple-

reflection extrapolation, 3-D wavefield extrapolation and tomography.



