-51-

Appendix

Inverse DMO

§ A.1 Prestack full migration

The presence of a single spike in the dataset, at travel time t =t; , with shot at
(z,y,2 )=(h ,0,0) and receiver at (=h ,0,0), means that there is an ellipsoidal reflector at
all points (z,y,z) such that the sum of the distance from a point (z,y,z) on the

reflector to the source \/(z -h )2+y2+22, plus the distance from that point to the

receiver \/(x +h )2+y2—+—z2, equals the travel time times the velocity:

V(z-h )2ty 222 + V(o +h P2y = vty . (A.1.1)

The ellipsoid in equation (A.1.1) can be written as

NGNS s

a, can be found by setting 2 =0 and y =0 in equation (A.1.1):

a, = vt /2. (A.1.3)

Similarly,

a, = a, = +/(vt /2)-h% = ot, /2, (A.1.4)

where t, is the normal moveout (NMO) time:
1,2 =, - (2h /v)?. (A.1.5)

Prestack migration of an impulse therefore produces the ellipsoid

. ) y 2 Y
[—vth/2] + [W] + [Tn/é—] =1. (A.1.6)

Using equation (A.1.5) we have

2 2 '
ad >+ y24 2t = (vtn /2) : (A.1.7)
1+ (2h /ut,)
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The change of variable

2 z?

XTOT (2h /ot )?

compresses the ellipsoid (A.1.7) to the sphere
X*+ y? 42t = (vt /2)%,
which is the zero-offset migration of a spike at the NMO time ¢, .

Zero-offset migration is described by the dispersion relation
2
v
(3] (vt o mon) =
Inserting the Fourier transform of the change of variables (A.1.8)
k2= k2 [1 + (2h /ut, )2] ,
into equation (A.1.10) gives

2 hk 2
v 2 2 2 2 z
¢ ()i [2]

n

This is the dispersion relation for prestack, post-NMO, full migration.

§ A.2 Prestack partial migration
Prestack full migration (Figure A.2.1) can be done in three steps:
(1) NMO.
(2) Prestack partial migration (DMO): substitute

hk, \°
w02=wn2_[tz]
n

(A.1.8)

(A.1.9)

(A.1.10)

(A.1.11)

(A.1.12)

(A2.1)

on the right-hand side of equation (A.1.12). Equation (A.2.1) is time depen-

dent: w, and t, appear together. It is velocity independent (but constant

velocity was assumed).

(3) Migration: using the dispersion relation:

2
B ——

(A.2.2)
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FIG. A.2.1. Decomposition of prestack full migration to NMO, DMO, and poststack
migration.
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§ A.3 Inverse DMO

The relation (A.2.1) can be used to derive the relation between the zero-offset sec-

tion m and the common-offset section d .

Starting from the inverse Fourier transform

dlta ks h) = [[dw, e d( k), (A.3.1)

and changing variables w, to wy, we have

d .
_ fdwo Wy ¢ S W, (o b B Ky Yty d[w,, ((")Oytnihikz );kz ,h]
d(«)o

d y
— fdwo Yn e (wols bk )l (wo,kz ) s , (A.3.2)
d WO

where w,, (wg,t, ,h ,k; ) is given by equation (A.2.1). Defining
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A = /14 (hk, Jwot, )?, (A.3.3)
we have
w, = Auwg, (A.3.4)
and
‘fj‘:o — :)0 — A (A.3.5)

Substituting equations (A.3.4) and (A.3.5) into (A.3.2), we finally get

d{ty ke h) = [dwg AT e m (wo b,) (A.3.6)

§ A.4 Impulse responses

Deregowski and Rocca (1981) showed that DMO will smear an impulse at
(z =0,t =t, ) to the ellipse

td(z)=t,’ [1—2—2] : (A.4.1)

The inverse DMO will therefore smear an impulse at (z =0,t =t ) to the curve
te
_ut
h 2

The DMO and inverse DMO impulse responses are shown in Figure A.4.1. Applica-
tions of inverse DMO after DMO (D*D ~1I), and DMO after inverse DMO
(DD* ~ I), are shown in Figure A.4.2.

ta(z ) = (A4.2)

§ A.5 Inverse DMO in three dimensions

In equation (A.1.1), I made the assumption that the shot and receiver lie along the

z axis. In general, however, they do not, and the half-oflset is a vector

ha
(1) as

¥

Let 6 be the angle of rotation such that

cosf
h = lsme] ko, h = v/ R +h* . (A.5.2)
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FIG. A4.1. (a) DMO impulse response. (b) Inverse DMO impulse response.

We can rotate the (z,y) axes to (z,y') by

z! cosf sinf|(z
y'] = |-stin8 cosf )|y’ (A.5.3)

so that the shot and receiver lie along the z' axis, as in equation (A.1.1), and we can
make the same development of equations (A.1.1) through (A.3.6) in (z',y') coordi-

nates, obtaining

d(t, h,h,h==fd%A4e4W%m@@h,y) (A.5.4)

with

A = /1 + (hky Jupt, ) . (A.5.5)

To return to the original coordinates, recall that rotation at the space domain

corresponds to a rotation in the same direction at the frequency domain:
koY cosf sinf) (k=
ko ) = |-sind coso ||k, |- (A-5.6)

hk,1 = h(cosf k, + sinf k) (A5.7)

So,

== (h cos@)k, + (hsinf)k,

— bk, + h, kK,
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(3) IDMO after DMO (b) DMO after IDMO
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FIG. A4.2. (a) Inverse DMO after DMO of an impulse. (b) DMO after inverse DMO
of an impulse.

=hk,

and equations (A.5.4) and (A.5.5) become
d(t, ky Ky b)) = fdwnA‘l e im (work Ky ) (A.5.8)

where
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A = /14+(hk/wpt, )? . (A5.9)

§ A.6 Summary
DMO and its pseudo-inverse are given by Table A.6.1.

DMO m(w) = fdt AL e WA g (t h)

Inverse DMO | d(t,h) = fde‘le"“’Atm(w)

TABLE A.6.1. The DMO is a unitary-like operator since its pseudo-inverse is also its
complex conjugate.






