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Chapter 2

Formulation

The object of this chapter is to formulate a multichannel linear inversion for over-
coming aliasing, first in a simple one-dimensional, time-invariant case and then in

reflection seismology.

§ 2.1 Aliasing revisited

When a function f (z) is sampled with a certain sampling frequency Az, its

Fourier transform is replicated: if f (z) has the Fourier transform

f(z) D F(k), (2.1.1)
then
sampled|[f (z)] D i F(k-nk). (2.1.2)

The sampling frequency & (kappa) is defined by
Kk = 2n/Az . (2.1.3)
Nyquist (1928) showed that if the function f is band-limited,
F(k)=0 for|k |Z2W, (2.1.4)
then sampling is adequate if the sampling rate is at least twice the band limit
k>2W. (2.1.5)

As shown in Figure 2.1.1f, if the condition (2.1.5) is true, then F'(k) can be easily
restored from its samples simply by looking at the spectrum for | £ | <k/2. However,
if W is larger than x/2, replicated transforms overlap as shown in Figure 2.1.1h, and
the result is aliasing: high frequencies appear as low frequencies. Unique restoration of

f from its samples is impossible.

If the band limit is W =N k/2, there are N contributions of the form F (k-n k)
to the Fourier transform of the sampled data. If the aliasing fold /V is odd,
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FIG. 2.1.1. Spectral interpretation of sampling and aliasing. (a) A low-frequency sig-
nal, and (b) its schematic Fourier transform. (c) A high-frequency signal, and (d) its
Fourier transform. (e) Samples from the function in (a), and (f) their corresponding
Fourier transform. (g) Samples from the function in (c) and (h) their corresponding
Fourier transform. The solid line is the absolute value of the sum of two contribution
whose absolute values are denoted by the dashed lines. The sampling rate in (g) is
inadequate: there is no way to recover the function in (¢) from the sequence of samples

in (g).
. (N-1)/2
sampled(f (z)] D ), F(k-n«k). (2.1.6a)
n =-(N-1)/2
If N is even,
N/2
sampled|[f (z)] D Z F(k-nk). (2.1.6b)
n=-N/2+1
In a matrix form, for N =3, we have
1 F(]C —KZ)
sampled(f (z)] D Y] F(k-nk) = (1 1 1] Fiey |. (2.1.7)
n=- F (k +k)

Equation (2.1.7) is under determined: the data are not sufficient to restore f .

]
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§ 2.2 Multichannel inversion in one dimension

Suppose a function m (z) is filtered by J convolution filters, h;, prior to sam-

pling as shown in Figure 2.2.1. For each channel we can use equation (2.1.2) with

F(k)=h;(k)mk):

d; (k)= Z h;(k-nk)m(k-nk), for j=12,---,J . (2.2.1)
n

— I—— A/D d, (x)

— h2 l‘ A/D d?__(X)

m(x) h; A/D d; (x)
hj A/D d] (x)

FIG. 2.2.1. Multichannel data. The model m is filtered by J filters, in parallel, before
sampling.

In a matrix form, for J=>5 and N =3, we have

(dy(k))  (hak=r) hy(k) hy(k+x))

do(k) holk—k) holk) holk+e)| (m(k-k)

da(k)]| = | hslk—x) ha(k) ha(k+k)| | m(k) : (2.2.2)
d (k) ho(k—x) hyk) hy(k+x)| Lm(k+x)

| ds(k) | hs(k—x) hs(k) h(k +k) |
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Multichannel inversion is the solution to this system of equations. It interpolates on
the z axis because it extrapolates on the k axis: the data are known up to the fre-
quency k/2, because d (k) is replicated: d (k-x)=d (k); the model, however, is found
for | k | <3k/2, because m (k), m (k-«), and m (k +xk) are found for |k | <k/2.

A classical example of multichannel inversion is Shannon’s note on sampling a
function and its derivative quoted in §1.3. A schematic Di-channel (J=2) experiment
is described in Figure 2.2.2. The data d are samples from the model m . The data d,

are samples from the first derivative of the model, tk m (k).

1 A/D }d,

I H A/D }d,

FIG. 2.22. Di-channel data of a function and its derivative. :k is the differentiation
operator.

If there is no aliasing (N =1), the data are

dy(k) 1
[dz(k)] = | m (k) . (2.2.3)

The least-squares solution for this overdetermined system is (for k #0)

1 . d l(k ) 0
m(k)= Y [ 1 1/ik ] do(k)] - (2.2.4)
The processing implied by equation (2.2.4) is a separate-channels inversion, per-

formed as follows:

(1) Separately invert each channel.
(2) Sum.

This is the approach taken in geophysical processing:
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(1) Map each common-offset section to the zero offset (by NMO and DMO).
(2) Stack.

One may want to allow weighted stacking to reduce the expected noise near kK =0 in
channel 2 in equation (2.2.4) (to mute noisy or stretched data in the geophysical case),

but essentially the separate-channels inversion is adequate when there is no aliasing.

The separate-channels inversion is inadequate if there is aliasing. If m (k) is
bandlimited by 2, then adequate sampling requires a sampling interval of Az <1/2.
If we sample each channel with Az =1, we have, according to equation (2.1.6b), with

N =2 and k=2,
dik)=m(k)+ m(k-2m)
in channel 1, and
do(k) =ik m(k)+i(k-2m) m(k-27)

in channel 2. In a matrix form, we have a special case of equation (2.2.1):

dy(k) 1 1 m (k)
[d2(k) ik ik-2m)){m(k-2m))" (2.2.5)

The processing of equation (2.2.4) will give the incorrect result,

di(k)
mk) =g (1 v ][dz(k)]

(2.2.6)

1 . m(k) + m (k -2)
=5 [1 1/ik ][ik m(k) + i(k-2m) m(k‘Q”)]

=m(k)+ (1 —w/k] m (k -27)

+m(k).

The correct processing is inversion of the matrix in equation (2.2.5):

m (k) “i(k-2m)  1)(dk)
[m(k—‘-’w)] - é},ﬁ[ik —1][d2(k)] : (2.2.7)

The multichannel inversion of equation (2.2.7) and the separate-channels inversion of
equation (2.2.4) imply two different processing techniques. The conclusion for reflection
seismology is that conventional processing, designed for well sampled data may become

inadequate when the data are aliased.
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§ 2.3 The choice of model and data

Formulating multichannel inversion in reflection seismology first requires the
description of the relations between the physical properties of the earth (the model)

and the seismic waves (the data).
The wave equation for an acoustic isotropic medium
pii=v[Kv-u] , (2.3.1)

is obtained by substituting Hooke’s law

P=-Kvymu, (2.3.2)

into Newton’s! law,

pu=—-yP . (2.3.3)

u(r,t) is the displacement vector, P (r,t) is the presure, p(r) is the density, and K (r)
is the incompressibility. t is the time, r is the space-location vector. 7 is the del
operator: 7P is the presure gradient (force), w-u is the displacement divergence

(strain). U is the second derivative in time of the vector u.

If K and p are constant we have the familiar result:
u= . v(v u] . (2.3.4)

Any wave, u(r,t) = f (t-s'r)é, where s=Vp/K & is the slowness vector, and & is any
unit length vector, is a solution to the wave equation (2.3.4).

The physical properties K (r) and p(r) seem to be a natural choice of a model for
multichannel inversion. Unfortunately, the relations between seismic data and this
model are nonlinear: if the elastic coefficient K is doubled the data will change in a
complicated way, not just double in amplitude. In the context of multichannel inver-

sion the h; filters of equation (2.2.2) are nonlinear for this model.

p(r) and K (r) are seldom found by reflection seismology. Reflectivity is the phy-
sical property reflection seismology is good at finding, (Claerbout, 1984). Reflectivity is
defined as the gradient of the log of the impedance, VK p. To see why, consider a

one-dimensional example:

K, for z <0
K(z)= K, for z>0° (2.3.5)

1 Robert Hooke and Isaac Newton did not like each other, to say the least; nevertheless, seismology is
based on a combination of the physical principles they formulated.
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and

4 for z <0
plz) = Py for z>0° (2.3.6)
The wavefield is
J(t-siz)+ R f(t+s,7) for z <0
ulz,t)= T f(t-sqz) for z>0 - (23.7)

f (t—syz) is a general incident wave. R and T are the reflection and transmission
coeflicients. The slownesses are s; = \/pj /K; for j=1,2.

Continuity of displacement and presure at z =0, can be used to determine T and

R : continuity of displacement implies
1+R =T ; (2.3.8)
continuity of presure and Hooke’s law give
\/m[l -R) = VKos T . (2.3.9)
From equations (2.3.8) and (2.3.9) we get
VK 1p1 = VK 92

VK 1p1 + VK 9p2
2 \/Kms (2.3.10)

VEK1p1 + VK202

The reflected wave R f (t+z /v,) is proportional to the reflectivity R = wlogVK p.

R =

y

T =

Equation (2.3.10) was obtained for a one-dimensional example but it holds also in
two and three dimensions for normally incident waves. Since the primary reflections
on a zero-offset section are in normal incidence, the relationship between the seismic
wavefield, as recorded on the zero-offset section and the earth’s reflectivity is approxi-
mately linear: the approximation is in neglecting transmission loss and multiples; the
linear operator is poststack migration. Non-zero-offset data are also approximately in
linear relationship to the reflectivity: the linear operator is prestack migration; the
approximation is in multiples and amplitudes; the travel time of the primary reflections
is exact. Since both the zero-offset section and the non-zero-offset section are linearly
related to the reflectivity, they are linearly related to each other, the linear operator is

prestack-partial-migration also known as dip-moveout (DMO).

As shown in Figure 2.3.1, the model is the zero-offset section which we would

record if we performed an adequately sampled zero-offset experiment.
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FIG. 2.3.1. The choice of model and data. m is the zero-offset section; each d; 1sa
common-offset section after NMO. The D+J- operators are inverse DMO.
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§ 2.4 Velocity variations

The data are after NMO and the model is unmigrated, as shown in Figure 2.3.1.
This leaves only the DMO (and the sampling, A/D) between the data and the model.
This is to decouple the process of overcoming spatial aliasing, from estimation of velo-
cities: NMO and migration strongly depend on the velocity; DMO depends on velocity
only slightly.

The DMO is velocity independent for any constant velocity. In the presence of
velocity variations the DMO requires corrections. Rocca (1982) suggested to use a
velocity-corrected effective offset in the DMO. Rocca’s correction for depth varying
velocity is easily applied in both DMO and inverse DMO. Incorporating a correction
for lateral velocity variations is also possible (Ronen, 1983). Hale (1983) followed and
developed Rocca’s suggestion, but showed a minor effect of the correction when it was
applied to field data, he (1983) and Bolondi et al (1984) showed that velocity variations

have two distinct and opposite eflects in connection to DMO, and the overall effect is
mild.

§ 2.5 The channel operator — D+

I show in appendix A that the relation between the time-space Fourier transform
of the zero-offset section m (k ,w) and the space Fourier transform of a common-offset

section d; (t ,k ) is the following:

d;(t k)= fde-le-‘wA‘ m(w,k), (2.5.1)

where

A =\/1+[hjk jwt]*. (2.5.2)
A discrete form of equation (2.5.1) is

di(t,k)= A e A m(wk), (2.5.3)

which is a matrix-vector multiplication:

d;(k)=D%;(k)m(k). (2.5.4)
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The vectors are the common-offset section

(d;(1,k) )
d;(k)y=1d;(t k) |, (2.5.5)

d] (nt ,IC )

\ 7

and the zero-offset section

([ m(1,k)

m(k)=| m(wk) |. (2.5.6)

Lm(nw,k))

The matrix D% is the inverse DMO operator: an nt X nw matrix, whose value in the

t -th row and the w-th column is

[D+f(k)]w,¢ = A-le twAt (2.5.7)

§ 2.6 Multichannel inversion in reflection seismology

We can now merge sampling theory (equation 2.1.6) and migration (equation

2.5.4) to formulate multichannel inversion in reflection seismology.

A sampled common-offset section is

d;(k) =Y, D% (k-nk)m(k-n«) . (2.6.1)

For J =5 offsets and aliasing fold N ==3, the system is

d(k)y  [D*ilk-x) D*i(k) D*y(k+x)]

dy(k) D*y(k-k) D¥y(k) D*yk +x) m(k —«)

ds(k)]| = | D*3(k—k) D*3(k) D¥g(k+«)| | m(k) . (2.6.2)
dy(k) D*,(k-k) D*,(k) D (k+x)| (m(k+x)

(ds(k)) | D*(k-x) D¥g(k) D¥s(k+x)

The only difference between equation (2.6.2) and the scalar case of equation (2.2.2) is
that here there are vectors and matrices, d;, m, and D™, while in equation (2.2.2)

there were scalars, d;, m, and h;.
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FIG. 2.6.1. The matrix of equation
(2.6.2), for various spatial frequen-
cies. The matrix has J XN blocks,
the j,n-th block is the inverse
DMO operator, D¥;(k-nk): a
nt X nw matrix, (here nt =n w=32,
J=>5 and N =3).
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Equation (2.6.2) is a system of J X nt equations (one equation for every time sam-
ple of every common-offset section), with N X nw unknowns (that is N m (k—n &)’s,
each nw long). The matrix has J X N blocks; each block D*;(k-n k) is an nt Xnw

matrix. An example of the matrix in equation (2.6.2) is plotted in Figure 2.6.1.

Solving equation (2.6.2) not only continues the data in the offset direction as
DMO should, but also continues the data in the wavenumber , k, direction from the
low frequencies | k | <x/2, on which the aliased data d; are given, to the full range,

| k | <N k/2, required to describe the zero-offset section m.

§ 2.7 Singular value decomposition

An obvious requirement for multichannel inversion is that the channels are
independent. Whether they are can be studied by looking at the singular value decom-
position of the matrix in equation (2.6.2). Singular values of that matrix for some fre-
quencies k are shown in Figure 2.7.1. For k =0 and the k =«/2 there is apparently a
serious rank deficiency. In fact, there is no problem with those frequencies because

m (z ,t) is a real function and this imposes constraints on zero and x/2 frequencies.

m-
m-
FIG. 2.7.1. Singular values of G(k) o . . ,
for various k’s. Top: k =0. Middle:
k =x/10. Bottom: k =x/2. The 96
singular values are sorted in decreas-
ing order. High value indicates a ™
well resolved feature. Zero indicates
a feature that cannot be resolved (o
(null space). —-
o T T
m-
(u-
O T 1
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§ 2.8 Time-invariant formulation

When the channel filters are time invariant, multichannel inversion is performed
by inverting many small matrices of the size J X N (scalars), as in equation (2.2.2). If
D' were time invariant we would solve nz X n w systems of J XN, instead of solving

nz systems of (N X n w)X(J Xnt), as implied by equation (2.6.2).

DT is time varying because the shape of its impulse response is

2 (z—x )2 -1
DR FE

from equation (A.4.2). The input impulse is at time ¢, and midpoint z,. The shape
(2.8.1) is space invariant because it depends on z only as z -z, but it is time varying

because it depends on ¢ /¢y

In their derivation of finite differencing DMO, Bolondi et al (1982) used the log

transform
r=logt , (2.8.2)

which makes the impulse response 7 invariant:

-1
(e"’°)2_—_ [1—(75—;"-&] : (2.8.3)

where 7 is log ¢ .

To find the transfer function whose impulse-response shape is given by equation
(2.8.3), start from equation (2.5.1):

e ]

d;(tk)= fde-le-f“A‘ m (w,k) (2.8.4)

-~00

o] o0
= fde”le"i“At fdt’ et m(t! k)
—00 0

o] o0
=fdt'm(t’,k)fde‘lei“[tl”At].
0 —00
A is \/1—1—(hk Jwt )2, Use the log transform (2.8.2) to obtain
o0 o0
dj(eTk) = fdv’ e"m(e” k) fde-l givle”-AeT (2.8.5)
~00 —-00



-26-

A is \/1+(hk Jwe™)?. Following Owusu and Gardner (1983), use the log transform:

dj(rk)=¢e"d;(e"k),
and
m(? k)=¢e” m(e” k)

(note that a gain term e’ is included), to get

aj(r,k):effdf m(f,k)fde-lere’-Ae’T
— [ar m@ k) IG7 H),

where

[e.¢]

I(r,7 k)= erfde’1 givle” e
-00

Change the integration variable

then

I(n7 k) = fdoA-l e ol AL
—00

(2.8.6)

(2.8.7)

(2.8.8)

where A =\/1+(hk /6)%. I(r,7 k) is therefore a function of 7~7' (and k). Define:

fi(nk)y=1(r7=0k),
and then equation (2.8.7) can be written as the convolution
di(rk)=f;(rk)*m(rk).
Fourier transforming over 7 we obtain

d; (k) =F;(Qk) m(Qk),

where the transfer function F; is the Fourier transform of [ ;.

Including spatial aliasing, we have

d; (k) =Y F;(Qk-n«) i (Qk-nk).

(2.8.9)

(2.8.10)

(2.8.11)

(2.8.12)
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The advantage of the time-invariant formulation (2.8.12), compared to the block
matrix inversion of equation (2.6.2), is efficiency. Some disadvantages are that this
efficiency does not extent to 3-D, velocity variations cannot be incorporated, and some

nasty integrals need to be evaluated.

I did not develop the time-invariant formulation (2.8.12), but applied the more

straightforward block inversion of equation (2.6.2).

§ 2.9 Missing and muted data

Missing data are often treated as zero data in seismic processing. However, inver-
sion fits a model to the data, and if an unreasonable part of the data are zero, the
inversion will find an unreasonable model. The right way of treating missing data is to

invert the operator that caused their loss.

Suppose there is a dead trace at z;, due to a skipped shot or a dead receiver.

The trace is dead because a filter

1 for z %z
miss (z ) = { (2.9.1)

0 for z=uz,

was applied, in addition to the wave propagation filter D+]- and the sampling
II(z /Az ). The data are

d;(z)=1I(z /Az) miss (z) D*; (2 ) m(z) . (2.9.2)
In the frequency domain,

d; (k)= z MiSS (k-n k) D*; (k-n k) m(k-n &), (2.9.3)

where

ikzy

Miss (k)=1-e (2.9.4)

Mute, due to NMO stretch, or any other reason should be treated as missing data.
If the mute is the same in all midpoints there is no need to actually enter the MISS (k)
filters. Instead, we allow a varying length of the d; data vectors in equation (2.6.2).
The NMO mute zone is not considered data and does not enter into the multichannel

mversion.
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§ 2.10 Interlaced sampling

In most recording geometries different common-offset sections cover different mid-
points. The j-th common-offset section can be displaced by z; relative to some global

reference:
d;(z)=1I|(z-2;)/Az]D*;(z) m(z) . (2.10.1)

In the frequency domain, the shift operator exp(ikz;] must be entered into the mul-

tichannel inversion as part of the operator

4 k)= [e"“‘“"”)‘f D*; (k-n k) ]m(k-n k) . (2.10.2)

n

§ 2.11 Moving sources/receivers (marine)

Land data are collected with stationary sources and receivers. Boats, on the other
hand, do not stand still in seismic surveys; the receivers move a considerable distance
while recording. This can easily be entered into the operator by letting z; in equation
(2.10.2) be

T; = sz + Vbt , (2111)

and the offset h; in equation (2.6.1) be

where ¢ is the recording time and V; is the boat velocity.

§ 2.12 Deconvolving receiver groups

Each trace in reflection data is rarely recorded by a single receiver, rather it is the
sum of a group of adjacent receivers. This improves the signal-to-noise ratio but the
spatial resolution is reduced because the data are a moving average of the wavefield

instead of the wavefield itself.

The smear effect of receiver groups can be partially removed by multichannel
inversion. For example suppose there are three receivers in each group. The common-
offset section d;(z), recorded by the three receivers at half-offsets h;~Ah; and h; +A

is the sum of the three common-offset (CO) sections:

d;(z) = CO(h;-A,z+A) + CO(h; ,z ) + CO(h; +A,z-A) . (2.12.1)
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Fourier transforming over z we obtain

d;(k)=e®*2CO(h;~A,k) + CO(h; k) + e ™2 CO(h; +Ak) (2.12.2)

|
o

i (k) m(k),

where the operator is

D*t; = ¢e¥*2 [D*(k)],,]_A—f— [Dﬂk)],,} + e 7%A [D+(k)],,1+A. (2.12.3)

§ 2.13 Integral formulation

The matrix form of aliasing in §2.1 describes uniform undersampling. A more

general form of undersampling is nonuniform.

Equation (2.5.1) can be written as

d;(t,x)= fdke k2 fde‘le"""A‘ m(wk ), (2.13.1)

which is a linear system of equations with m (w,k) as the unknowns. Compared with
the uniform-sampling multichannel inversion of equation (2.6.2) we have here only one
system of equations to solve instead of many (equation (2.6.2) had to be solved for

every k), but equation (2.13.1) is nz times bigger than any one of (2.6.2).

We may solve (2.13.1) for m (w,k ), or use the Fourier transform:

m(wk )= fdt’e‘“’” fdz’e”"‘”’ m(t!,z) (2.13.2)

to solve directly for the model in the (¢,z) domain, by substituting equation (2.13.2)
into (2.13.1):

di(t,z)= fdkeik’fde'le'i“’Atfdt’ei“"fdx’e"iw"m(t’,:t ). (2.13.3)

The boundaries of the integrals with respect to t’ and z' correspond, more or less, to

the size of the DMO impulse response.

§ 2.14 Multichannel inversion in three dimensions

In 3-D, there are two spatial axes,  and y. The half-offset h and the spatial {re-

h, k,
h-————[h ] and k———[k]. (2.14.1)

quency k are the vectors
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Aliasing may occur in both z and y directions, so the 3-D equivalent of equation
(2.6.1) is
dy(k, &, ) = YD Dk, —n, &, by -ny 6, Jmlk, -1, £, ky-ny k), (2.14.2)
n, ﬂy

Where &, is 2n/Az, Az is the sampling interval in z, k, 1s 2r/Ay, and Ay is the

sampling interval in y. Dyt is the same as D+j in equation (2.6.1), only now

2
h'k
A?=1+ |22 14
+[ — ] (2.14.3)

2
14 [ hy (ky =7y 6, )+hy (ky -1y £y ] .

wt

In the 2-D case (equation [2.5.2]) the offset vector was in the z direction (k, =0).

§ 2.15 Summary

Processing that is optimal when there is no aliasing may be totally inadequate in

the presence of aliasing.

Multichannel inversion in reflection seismology is based on sampling theory and

the wave equation. The essential theory is summarized in equation (2.6.1).



