APPENDIX

The Markov chain and its steady state

This appendix shows that the one-step Monte Carlo statics estimation algorithm
produces a series of parameter vectors with the Gibbs probability distribution given by
equation (3.10), when the algorithm is run at constant T for an infinite number of
iterations. To obtain this result, I describe the algorithm as a Markov chain, and then
show that the standard limit theorem (stated below) holds. The basic properties of
Markov chains are sketched only briefly. Readers unfamiliar with the general theory
should refer to Chapter 15 of Feller (1968), Kemeny and Snell (1960), or any other

relevant text.

A.1 PRELIMINARIES

I refer in this appendix only to those Markov chains having a finite number of
states. A chain is irreducible if every state can be reached (after an arbitrary number
of iterations and with some positive probability) from every other state. Any state x;
is said to be periodic if the probabilities of recurrence pi,-(") are non-zero only for some
n >1 and an integral multiple of n. Otherwise, x; is termed aperiodic. The following
theorem (see, e.g., Feller, 1968; or Kemeny and Snell, 1960) will be employed in the

derivation of the main result:

If a Markov chain ¢s irreducible and aperiodic, then the limits

U;j = lim p;{") (A-1)

n—-00

exist and are independent of the initial state x; . The numbers {U; } uniquely satisfy
Uy, >0, MU =1 (A-2)
and
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The transition-probability matriz P contains the transition probabilities {p;j} P
is called a stochastic matriz because each pij = 0 and each row sums to unity. Each
element of the state-probability vector u(n) = {u;(n)} is the probability of being in
state x; at time n. If u is a row vector, the one-step transition from u(0) to u(1) can

be represented by the equation

where u(0) contains the initial state probabilities. The state probability vector after n

steps is
u(n) = u(0)P"
For chains that satisfy the theorem above, we can define

U = lim u(0)P"

n—

U is the steady-state, or equilibrium vector of the Markov chain. Rewriting equation

(A-3) shows explicitly that U is an eigenvector of P, with eigenvalue 1:
U=UP
This relationship will frequently be used below.

To show that the statics algorithm is a Markov chain with Gibbs equilibrium pro-
babilities, I shall first specify the structure of the transition-probability matrix P. It
will then be shown that P is both irreducible and aperiodic, after which it will be pro-
ven that the steady-state distribution is Gibbs.

A.2 THE TRANSITION-PROBABILITY MATRIX

The one-step statics estimation algorithm sequentially ‘“visits” each parameter
X, (a shot or receiver static) and changes the parameter’s value by choosing a random
number from the probability distribution in equation (3.7). Only N distinct values for
each parameter are allowed (this limitation is just an upper and lower bound, some-
times called a “shift limit”’). One iteration is completed after each parameter has

undergone a (possible) transition.

The transition-probability matrix P(m ) directs each change in the value of X, .
Because there are M parameters that can each assume any of N values, there are NM
possible states of the system, and P(m ) is an N¥ by N matrix. Each row contains
only N non-zero elements, because only N new states are directly accessible from any

given state. There are M distinct transition-probability matrices P(1), - - -, P(M) for
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each of the M parameters, respectively. The matrix of transition probabilities that
directs the changes from one complete iteration to another is given by the product of

the M matrices:
P = PLP(2)---PM) . (A-4)

To show that the Gibbs distribution {II; } in equation (3.10) is the equilibrium vector
for P, it will first be shown that P represents an irreducible and aperiodic Markov
chain. It will then be shown that {Hj} is an eigenvector with eigenvalue 1 for each
P(m ) and thus also for P. When the theorem stated above is used, it can then be con-

cluded that the steady state of the Markov chain is the Gibbs distribution of equation
(3.10).

A.3 IRREDUCIBILITY

A transition-probability matrix is irreducible if every state can be reached from
every other state with some positive probability over some arbitrary time. A Markov
chain must be irreducible if it is to have an equilibrium distribution; otherwise the sys-
tem may fall into a state from which it can not enter some other states, and the sys-

tem can no longer be independent of its initial configuration.

A set of states in which all members of the set are reachable (over time and with
positive probability) from all other members of the set is called an ergodic class. Fol-
lowing the argument used by Fosdick (1963) for a two-dimensional (Ising) lattice, I now
show that P is irreducible by showing that all possible states belong to the same

ergodic class.

For each transition of X,,, only N possible values are allowed. This transition
produces one of N new (or repeated) states. Prior to the transition of X,,, N
different configurations of the other M —1 parameters are possible. When X,
changes, the other M - 1 parameters remain constant, and the new state is one of the
N possible states that contain the pre-existing configuration of the other M -1
parameters. These N states are all accessible to each other via the transition matrix
P(m ), but they are inaccessible from any other state using this transition matrix.
Thus each P(m ) partitions the NM states into NM-! ergodic classes, and each of these

ergodic classes is a disjoint set of N states.

Now suppose that one is interested in the transition of X,, followed by the transi-
tion of X,, ;. Both P(m ) and P(m +1) partition the states into NM ! ergodic classes.

Each ergodic class in P(m ) is different from each ergodic class in P(m +1), but each
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state is contained in an ergodic class defined by both matrices. For example,
{x1, X5, -+, xy} may be the states of an ergodic class in P(m). P(m 41) defines N

ergodic classes (among others) that each contain one of these N states; the N ergodic

classes are

x4, XN+ T ;XQN}
{XZ’ XoN+1 © " XBN}
{xn, Xyzpp s Xz )

When the product P(m ) P(m +1) is taken, each of these N ergodic classes are linked
via the class {x;, x5, ", xy} in P(m); thus P(m) P(m +1) partitions the N¥
states into N2 ergodic classes. By induction, one sees that the product (A-4) links
all states into a single ergodic class of N™ states. Thus, because every state can be

reached from every other state, P is an irreducible transition-probability matrix.

A.4 APERIODICITY

A state x; is periodic if its probability of recurrence, p,-,-("), 1s non-zero only for
some n > 1 and an integral multiple of n. Otherwise, the state is aperiodic. All
states of a system must be aperiodic if there is to be a limiting equilibrium distribution;
otherwise the system will not exhibit a distribution of states that is independent of
time. To show that all NM states of the system under consideration are aperiodic, I

will demonstrate that p; = p,-,-(l) 1s non-zero for every 1.

Each row of each P(m) contains N, and only N, non-zero elements. One of
these elements is always on the diagonal, because there is always some positive proba-
bility of retaining the current value of the m th parameter. For simplicity, consider a

two-parameter system with transition matrix Q = Q(1) Q(2). Explicitly stated, the

matrix product is

q; = % ik (1) gx; (2)
and the diagonal element is

TG = 2’; gir (1) a1i (2)

Because g¢; (1) > 0 and ¢;(2) > 0, and all the other elements are non-negative, then
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¢; > 0. By induction, the same conclusion is true for the diagonal elements of the
transition matrix for an M -parameter system. Thus, because each diagonal element of

P is positive, all NM states are aperiodic.

A.5 THE STEADY STATE

I now explicitly construct P(m ) for the one-step heat-bath method. Unlike the
two-step Metropolis approach, the random changes of a parameter’s value that this
method performs do not depend on the parameter’s current value. The method can be
characterized as a Markov chain, however, because the current values of the neighbor-
ing parameters (those shot and receiver statics within a cablelength) determine the

conditional probability distribution for any particular parameter.

The transition probabilities that govern the m th parameter are given by

exp{-E (x;)/T}

7] EA;(m
> o0, )/T) )
Dij (m) = jEA;(m)
(A-5)
0 otherwise
where A;(m) is the set of N indices j such that x; = x; everywhere except (possi-
bly) at z,,. It will be shown that
I; = 3 I py(m) (A-6)

tEA
where II; is given by the Gibbs probability distribution of equation (3.10) and

A =1{1,2, -+, NM} This relationship will establish that {IL; } is an eigenvector
with eigenvalue 1 for each P(m ).

Equation (A-5) says that, for a given 7, p;;(m ) is non-zero only if j € A;(m).

Likewise, for a given j, p;;(m ) is non-zero only if © € A;(m ). Thus one may write

Y Iipm) = 3 T pj(m) .

icA €A (m)

Substituting equation (3.10) for II; and equation (A-5) for p;;(m ) in the right-hand

side above, one obtains

ST p(m) — Z exp{-E (x;)/T} exp{-E (x;)/T}
ica 7 : Yexp{-E(x;)/T} 3 exp{-E(x;)/T}
P€A;(m) A jEA (m)
Reversing the order of the numerators and bringing the outside summation inside then

yields
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expd{—F X; T
I py(m) = exp{-E (x;)/T} ie%:(m) P{-E(x;)/T}
ot Y exp{-E(x;)/T} S e ( Ex)/T)

i€A €A (m)

Now note that when j € A;(m), A;(m)= A;(m). Thus the second term on the

right-hand side cancels to yield

L ewlBE)T)
Mirs(n) = TR T

1CA

which is equal to II;. Thus {Il; } is an eigenvector with eigenvalue 1 for P(m).

Inspection of equation (A-4) shows readily that {II; } is also an eigenvector with
eigenvalue 1 for P, and that U; = II; satisfies equations (A-2) and (A-3) of the limit
theorem. Thus, because P is irreducible and aperiodic, {Hj} is the steady-state distri-

bution of the Markov chain.
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