CHAPTER 6

Conclusions

The explicit formulation of residual statics estimation as a nonlinear, rather than
as a linear, inverse problem reveals the need for an initial guess in the estimation of
statics corrections. In most applications statics are small; thus an initial guess of zero
(in essence, no initial guess) for each shot and receiver static is sufficient for the attain-
ment of the best statics solution. When near-surface anomalies are large, however, zero
is not an appropriate first guess. Because the estimation of the resulting large statics
requires the location of the global minimum of a multidimensional objective function,
the presence of suboptimal local minima can lead to gross errors (cycle-skips) if the ini-

tial estimate of statics corrections is insufficiently close to the global minimum.

If no good initial guess can be made, the estimation of large statics corrections
requires a method of optimization capable of locating the global minimum among many
local minima, regardless of where the algorithm begins its search. Simulated annealing,
one such method, is a Monte Carlo technique that performs a controlled random
search. In applying simulated annealing to residual statics estimation, I have chosen to
use the stack-power criterion of Ronen and Claerbout (1985) to quantitatively
differentiate between statics solutions. The resulting Monte Carlo statics estimation
algorithm searches through statics solutions that can either increase or decrease stack
power, but the final solution is, with reasonable probability, the statics solution yield-

ing the greatest stack power.

The results of this thesis establish that Monte Carlo statics estimation can be
used successfully in a practical setting. Experimental tests were performed on both
synthetic and field data. In both cases, the data contain severe statics that would nor-
mally result in cycle-skips after statics estimation. The results of Monte Carlo statics
estimation, however, show that cycle-skipping need no longer be the difficult, if not

insurmountable, problem it has previously been for automatic statics algorithms.

The objective of this work is to obtain useful solutions that alternative automated
techniques cannot find. Although the use of thousands of iterations is computationally

costly, it may nevertheless be a practical necessity. The number of possible solutions
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In a statics problem is immense—practically, infinity; thus the mere attainment of g

reasonable solution is intriguing.

In residual statics estimation, the one-step heat-bath method is considerably more
efficient than the Metropolis technique. Instead of randomly choosing among all possi-
ble shifts, the heat-bath method focuses specifically on cycle-skips. Yet, despite this
improvement over the Metropolis method, the principal disadvantage of Monte Carlo
statics estimation is still computational inefficiency. The nonlinear nature of the prob-

lem appears to preclude a truly fast method.

A more efficient technique might be possible, however, if the problem were posed
differently. The Monte Carlo algorithm treats statics as a fully nonlinear problem,
thereby extending the ability to estimate statics from a linear into a completely non-
linear realm. But perhaps the problem need not be fully nonlinear; for example, there
should be a method that would more strongly discount the possibility of producing a
highly disordered stack, at any stage of the iterative process. One efficient approach is
indicated by the idea of seeding a crystal. Another approach, if prior knowledge of
geologic structure were available, would be to maximize the power in a dip-filtered

stack. In either case, random wandering would be limited, but not eliminated.

Experimentation is an integral element of the Monte Carlo approach. However,
no systematic, empirical study of statics estimation by simulated annealing has yet
been undertaken. Among the many unresolved issues is the algorithm’s reliability: no
two runs with identical parameters will exhibit identical behavior if different random
numbers are used. Although global optimization with a given T may succeed, another
attempt might fail. Thus far, the algorithm appears workably reliable: experimental
trial and error is necessary to choose T, but the synthetic and field data examples

show that successful runs can be obtained without excessive testing.

The success of Monte Carlo statics estimation is thus an empirical fact. For
further research to be fruitful, however, it is necessary to know why the Monte Carlo
method works. The structure of the residual statics problem appears to at least par-
tially account for the success of simulated annealing in the estimation of large statics.
The Monte Carlo algorithm essentially performs random sampling from a Gibbs distri-
bution. The Gibbs distribution, originally discovered in statistical mechanics, is closely
related to a spatial stochastic process in which conditional probabilities depend only on
nearest neighbors. Because the surface-consistent constraint of statics estimation
creates its own form of a nearest-neighbor system, calculations in the Monte Carlo stat-

ics algorithm can be organized such that changes in the objective function due to
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changes in a single parameter are easy to compute. The ease with which these compu-
tations are performed on a parameter-by-parameter basis appears central to the success

of simulated annealing in residual statics estimation.

Applications of simulated annealing to other nonlinear inverse problems appears
possible. Key criteria for applicability are whether the problem can be expressed in the
form of a nearest-neighbor model, and, more importantly, whether repeated forward

modeling can be efliciently performed.

The behavior of the Monte Carlo statics estimation algorithm can appear magical:
from complete disorder, a relatively structured, ordered stack can appear. Transitions
from disorder to order in physics produce much the same effect. To the extent that
both phenomena are understood, both can be explained in the same way: for a system
in equilibrium, low energy states are more probable than high energy states. This
statement of probability does not fully discount the possibility of entrapment in a local

minimum, but does strongly bias the search toward the deepest minima.



