CHAPTER 3

Residual statics estimation by simulated
annealing: theory

The estimation of large statics poses several diverse and interesting problems.
From a geophysical point of view, the problem is to accurately correlate related seismo-
grams. As I indicated in the previous chapter, the constraint of surface-consistency
leads to a computational problem that extends beyond the simple crosscorrelation of
one-dimensional seismograms. The actual problem is a multidimensional optimization

problem, in which each shot and receiver static is a parameter to be estimated.

Because the number of parameters to be estimated is always large, no statics esti-
mation problem is trivial. However, when statics are small (or a good first guess can be
made), conventional techniques of optimization can be employed with considerable suc-
cess. The case in which there are large statics (coupled with the lack of a good first
guess) deserves special attention. The large statics problem not only appears non-
trivial, but it also appears computationally intractable. Thus the estimation of large

statics is one of the more subtle problems in geophysical data processing.

In this chapter, I introduce a mathematical model for surface-consistent statics
and then describe how and why the estimation of large statics poses an apparently
intractable optimization problem. Using a heuristic argument, I then introduce the
technique of simulated annealing, describe how it can overcome the apparently intract-
able nature of the problem, and show two ways in which it can be adapted for statics
estimation. The statics algorithm I introduce is a Monte Carlo procedure that searches
for a solution in a random, yet controlled, manner. The chapter is concluded with a

formulation of the algorithm as a Markov chain.



_20-

3.1 A MODEL FOR SURFACE-CONSISTENT STATICS

In this section, I present a mathematical model for surface-consistent statics. This
model shows that statics estimation is inherently a nonlinear, rather than a linear,
inverse problem. Two previous solutions to the statics problem are then reviewed.
The first method is based on linearization and least-squares inversion. The second
technique incorporates a more direct approach to optimization, and serves as the basis

for the algorithm I develop in the remainder of the chapter.

3.1.1 The underlying nonlinearity

The surface-consistent model, described in §2.3, states that the time delay of each
trace is the sum of a shot static and a receiver static. Denote by d;;(¢) the trace
recorded at receiver j after shot 7 is fired at time { = 0. Designate the shot static by
s; and the receiver static by r;. Let h;;(t) be the trace that would have been
recorded if the near-surface were homogeneous; that is, if s; = r; = 0. Define
Gij = G(si,r;) to be an operator that delays the unknown trace h;;(¢) by the

amount s; + r;. Then, for each seismogram recorded in a seismic survey, the equation

dij(t) = G hij(t)] (3.1)
defines the relationship between the unknown, statics-corrected data h;;(¢) and the
observed data d;;(t). In a typical residual statics estimation problem, there are
thousands of simultaneous equations of the form (3.1). Beginning from this underlying
model, the solution of a statics problem either provides hi; (t) directly, or it provides a

solution for s; and r;, from which the h;; (¢ ) can then be obtained via the simple rela-

tion
hij () = di(t +s; +7j)
Because s; and r; are unknown, Gj; is also unknown. Thus, although G; is a linear

operator, its inverse is unknown; therefore equation (3.1) cannot be solved for h;; (¢ ) by

linear inversion. Equation (3.1) thus poses a nonlinear inverse problem.

3.1.2 Two previous approaches

A popular method for the solution of the system of equations given by (3.1) is to
derive a similar set of equations from (3.1) that can be solved by linear inversion
(Taner et al., 1974; Wiggins et al., 1976). This linearization is performed by first
estimating a time delay ¢;; of each trace d;; (t) relative to a reference trace f;; (t); t;;
is obtained by choosing the lag that yields the maximum of the crosscorrelation



-21-

between d;; (¢) and f;;(¢). Then, by invoking surface-consistency, one can write
tij ~ ‘Si + Tj . (32)

[Taner et al. (1974) and Wiggins et al. (1976) also include subsurface-consistent terms
in this equation—see §3.4.3]. The system of equations given by (3.2) is then solved for

each s; and r; using the method of least squares.

Another technique for the solution of equation (3.1) has been recently demon-
strated by Ronen and Claerbout (1985). Their technique is based on a fundamental
observation: the best estimate of shot and receiver statics is that estimate which max-
imizes the power (sum of the squared amplitudes) in the OMP-stacked section. To
express this mathematically, designate the unknown shot statics by s = {s; } and the
unknown receiver statics by r = {r; }. Denote the negative stack power by E(s,r).
Let dy), (t) signify the seismic traces after (approximate) NMO correction has been
made and sorting to midpoint (y ) and offset (h ) coordinates has been done. Then, to
estimate the best set of shot and receiver statics, seek the solution of the optimization
problem

r[gurlll E(sr)

where

2

E(sr) = —Z‘Xt] [%dyh(t +3i(y,h)+7j(y,h)) ] ) (3.3)

The subscripts ¢ and j are uniquely determined by y and A. To perform the minimi-
zation, Ronen and Claerbout (1985) iteratively update a statics model. They estimate
each shot and receiver static in sequence by choosing the lag that yields the maximum

of a surface-consistently averaged crosscorrelation function.

Both of the aforementioned techniques are successful for a wide variety of statics
problems. Both, however, are limited in one key respect. Because these methods
obtain estimates of time delays by picking the maxima of crosscorrelation functions,
they risk making gross errors, or cycle-skips, when near-surface anomalies are large. In
principle, this deficiency can be accommodated by first guessing the statics solution,
shifting the traces accordingly, and then using this new set of data as the input to one
of these methods. If the first guess of the shot and receiver statics is close to the
“true” solution, then the cycle-skipping problem is considerably diminished. If a good

first guess cannot be made, cycle-skipping remains a problem.
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In optimization theory, E (s,r) is called an objective function. In residual statics
estimation (and many other geophysical inverse problems) objective functions can con-
tain many minima. The deepest minimum of the objective function is called the global
minimum. All minima other than the global minimum are called local minima. In this
thesis, I use the stack-power criterion of Ronen and Claerbout to find the statics that
yield the best stack; these statics determine the global minimum of (3.3). As I discuss
in the next section, large statics can produce two problems that inhibit global optimiza-
tion. First, many local minima can exist. Second, there may be insufficient informa-
tion concerning the approximate location of the global minimum. The combination of

these two problems produces an apparently intractable optimization problem.

3.2 STATICS ESTIMATION AND COMPUTATIONAL INTRACTABILITY

Unfortunately, a good first guess cannot be obtained for some statics problems.
This is typically the case just when a good first guess is needed the most: when near-
surface anomalies are large. Under that condition, the data may reveal little, if any,
structure; thus visual interpretation of the data to obtain a first guess might not be

feasible.

What can be done, then, in the absence of a good first guess? One might suggest
an exhaustive search for the best estimate of shot and receiver statics. The best esti-
mate would be defined simply as that choice of s and r which globally minimizes
E (s,r).

An exhaustive search is computationally impossible, however, because the number
of possible solutions to a statics problem is enormous. Suppose that each shot and
receiver static may assume only N discrete values and that there are M shots and
receivers. Then there are NM possible solutions to the problem. M 1is typically
several hundred or more, and N is on the order of 50 when near-surface anomalies are

large.

The impossibility of an exhaustive search is no cause for dismay by itself. A
related and equally important issue is the shape of the objective function E (s,r). For
simplicity, consider the components of s and r to be the components of an M -vector
x = [s, r]. A schematic representation of the function E (x) is presented in Figure 3.1.
If £ (x) were to contain only one minimum, global minimization would be a straightfor-
ward task: an algorithm would need only to descend along the gradient of FE (x).
Because seismic data are bandlimited and statics are large, however, F (x) contains

many minima of different depths. Suppose that the expected statics span time delays
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FIG. 3.1. A schematic representation of the objective function E (x), where x = [s, r|,
a vector of length M. A true representation of E (x) would be plotted in M-
dimensional space. The goal of statics estimation is to find the value of x that globally
minimizes F (x).

that are as much as L times the dominant period of the data. Roughly speaking,
then, the projection of F (x) along any axis in x-space will contain L minima. The
precise number of minima in the M -dimensional space cannot be known, but it is rea-
sonable to conjecture that the number of minima grows exponentially with M, as does

the number of possible solutions.

Despite the large number of local minima, global minimization of E (x) can still be
a straightforward problem if the initial value of x is in the region of the global
minimum. The initial value of x is “in the region” if no uphill climbing is needed for
the global minimum to be found. This condition typically exists when statics are
small; then the usual initial value x = 0 is close enough. If x = 0 is not sufficiently
close to the global minimum, one can try to guess a value of x that is. If a close first
guess cannot be obtained, however, global minimization of F (x) appears impossible.
As I mentioned above, an exhaustive search cannot be performed—there are simply too
many possible solutions. Thus, if statics are large and a good first guess cannot be

obtained, the problem appears computationally intractable.
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Computationally intractable optimization problems are the subject of much
research among theorists who study computer algorithms (Garey and Johnson, 1979).
Precise definitions of intractability exist; here, a computationally intractable optimiza-
tion problem is defined broadly as a problem in which the number of possible solutions
grows exponentially with the number of parameters, and in which exhaustive search is

the only way (in principle) to find the optimal solution.

That a problem is computationally intractable does not mean that it cannot be
satisfactorily solved; intractability implies only that there is no way to be sure that the
solution achieved is globally optimal. The usual approach to computationally intract-
able problems, in geophysics and elsewhere, is to design a heuristic algorithm. Heuris-
tic methods are usually problem-specific, but some general methods exist. One general
heuristic technique is called iterative improvement (Lin, 1975). The method of statics
estimation described by Ronen and Claerbout (1985) is one form of iterative improve-
ment: each parameter (a shot or receiver static) is individually updated in sequence
until no better value for any parameter exists. Each time a parameter is updated, the
value that most decreases the objective function is chosen. In general, when objective
functions contain many minima and no good first guess can be made, the result of
iterative improvement is usually a local rather than a global minimum. Thus, in these
cases 1t is customary to employ iterative improvement many times beginning with
different (often random) initial guesses; the best result is then taken as the final solu-
tion. When the number of local minima is large, however, one cannot expect that ran-
dom initial guesses followed by descent to the nearest minimum would be likely to find
(or even approximate) the global minimum; this is the case in the estimation of large

statics.

The principal deficiency of iterative improvement is its strong dependence upon
an initial guess. This dependence arises from the method’s ability to make only
downhill moves; it thereby always arrives at a nearby minimum. For the estimation of
large statics, a technique with less dependence upon the first guess is needed. To solve
the cycle-skipping problem, a statics estimation algorithm must be able to search in

both the downhill and the uphill direction.
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3.3 SIMULATED ANNEALING

Recently, a new heuristic algorithm called simulated annealing was introduced for
the approximate global optimization of objective functions that contain many local
minima (Kirkpatrick et al., 1983). Simulated annealing is similar to iterative improve-
ment in that it updates individual parameters in sequence. Unlike iterative improve-
ment, however, simulated annealing can choose new values that either decrease or
increase the objective function. Because it has this ability to make uphill moves, simu-

lated annealing is not dependent upon an initial guess.

Simulated annealing is a Monte Carlo optimization procedure that mimics the
physical process of annealing. Annealing is the way in which crystals are grown: a sub-
stance is first melted, and then cooled very slowly until a crystal is formed. The rate
of cooling 1s important, because a non-crystalline, metastable glass can form if cooling
is too rapid. Kirkpatrick et al. viewed the growth of a crystal as analogous to finding
the global minimum in optimization, and the development of a glass as the analog to
wrongly selecting a local minimum. Their principal application was to the combina-

torial optimization problems that arise in the physical design of computers.

In conceiving the idea of simulated annealing, Kirkpatrick et al. made an analogy
between the energy in a physical system and the objective function in an optimization
problem. Physical systems in thermal equilibrium exhibit fluctuations in energy. By
introducing a control parameter analogous to absolute temperature, Kirkpatrick et al.
were able to perturb parameters in a way that simulates the fluctuations of a physical
system in thermal equilibrium. Controlled uphill are therefore possible; thus local

minima can be escaped.

Because simulated annealing is firmly rooted in an analogy with statistical
mechanics, I continue my discussion of the algorithm by first introducing some per-
tinent concepts from statistical mechanics. I then discuss two methods for the applica-
tion of simulated annealing to residual statics estimation. The first approach, based on
the algorithm of Metropolis et al. (1953), closely follows the technique described by
Kirkpatrick et al. (1983). The second method is a more eflicient version of the first

approach.
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3.3.1 Statistical mechanics

Statistical mechanics provides methods for the study of the behavior of macros-
copic systems (e.g., solids, liquids, or gases) composed of many microscopic constituents
(e.g., atoms or molecules)T. The results of statistical mechanics apply only to a system
in equilibrium; that is, a system in which enough time has elapsed such that its
behavior no longer exhibits the influence of its initial state. Whereas a system of just a
few particles can often be adequately described by the equations that govern mechani-
cal interactions, a system of many particles is too complex for this approach to yield
any useful predictions of the system’s behavior. When the number of particles is large,
however, statistical mechanics can be employed to derive important average properties

of the system.

A fundamental result of statistical mechanics gives the probability of a system
being in a given state if the system is in thermal equilibrium. The state of a system is
defined as the configuration of its microscopic components. Designate this
configuration as a random variable X = {X;, X, - - -, Xj; }, and denote the realiza-
tion of X by x == {z, o, - - -, 23y }. The probability that the system is in state x is
given by the joint probability distribution

P (X=x) = 7 € (3.4)

where F (x) is the system’s energy, kp is Boltzmann’s constant, T is absolute tempera-
ture, and Z is the normalizing constant

~-E (x
7 =y tl
x

Z is called the partition function. Equation (3.4) is a Gibbs distribution, also referred

to as a canonical distribution.

For a system in thermal equilibrium, the Gibbs distribution describes the expected
fluctuations of the system’s configuration. Of central importance here is the fact that
fluctuations can either decrease or increase energy. The low energy states are favored,
however, especially when the system is at low temperature: as T becomes small, the
Gibbs distribution assigns progressively greater probability to low-energy
configurations. In the limit as T —0, a system in equilibrium assumes its minimal

energy configuration, or ground state. This ground state often corresponds to a

TFor an introduction to statistical mechanics, see Reif (1965).



-27-

perfectly ordered, crystalline structure. To reach this ordered state, the system must
be cooled slowly, so that equilibrium can be attained at each new temperature.
Although the final state is highly ordered, a physical system passes through many

disordered states at non-zero temperature before it reaches its ground state.

3.3.2 Statics estimation using the Metropolis algorithm

The average behavior of a physical system in thermal equilibrium can be simu-
lated using the Metropolis algorithm (Metropolis et al., 1953). The simulation is per-
formed by randomly generating states with probabilities given by the Gibbs distribu-
tion. Low-energy states are the most probable configurations to be generated by a
Metropolis simulation. High-energy states are the least probable configurations, but

they are always possible.

The Metropolis algorithm proceeds as follows. A system is parameterized by M
model parameters. In physical simulations, a model parameter can be, for example, a
magnetic spin or molecular position. In statics estimation the model parameters are
the shot and receiver statics. For each individual model parameter X, , a random per-
turbation of its current value is performed, and the change in energy, AF, is com-
puted. If AE < 0 (i.e., if energy decreases), the perturbation is accepted. If AE is
positive then the perturbation is accepted with probability

-AE

PAE) = ¢ T
(Here and in the remainder of the thesis kg is taken to be 1.) This conditional accep-
tance is easily implemented by choosing a random number o uniformly distributed
between 0 and 1. If @ < P(AE') then the perturbation is accepted; otherwise the
existing value for the parameter is retained. Each time a perturbation of a particular
parameter is accepted, that parameter’s value 1s updated immediately, and all future
energy calculations are based on this value until it is updated again. Random pertur-
bations according to these rules eventually cause the system to reach equilibrium, in
which configurations x = {z,, } are generated with a Gibbs probability distribution.
See Hammersley and Handscomb (1964) for an elementary proof that the equilibrium

distribution 1s a Gibbs distribution.

The optimization technique of Kirkpatrick et al. slowly lowers the temperature T
during execution of the Metropolis algorithm. At high T, uphill moves are as likely as
downhill moves; as T decreases, however, uphill moves become increasingly unlikely.

If the system 1s cooled sufficiently slowly and equilibrium conditions are maintained,
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the model parameters eventually converge to a (ground) state of minimum energy. For
a detailed derivation of convergence properties with respect to changes in T, see
Geman and Geman (1984).

When the Metropolis algorithm is employed to estimate statics, the algorithm
accepts not only random guesses of statics that lead to increased stack power, but also
some random guesses that decrease stack power. The computation of the change in
stack power is a local calculation that does not require restacking all CMP gathers; only
those CMP gathers containing a trace associated with that shot or receiver static need
be restacked. Thus each shot static s; directly influences the stack power of only a

subset Y, of all midpoints y. Likewise each receiver static directly affects only a sub-

set Y, . The contribution to stack power due to s; is given by
J
2
¢ (i) = X % [Edyh(t+3i(y,h)+rj(y,h))] ; (3.5)
ers‘ ¢ h

where all other shot statics s;, k %17, and all r; are fixed. Similarly, the contribution

to stack power due to r; is given by
2

¢, (rj) = 3 2 I:Eh)dyh(t + Sy, h)t iy, h)) ] ) (3.6)

yey, t
J

where now 7, k =7, and all s; are fixed. The computations required to obtain qﬁs'(si)
or ¢>,J(rj) are considerably simpler than the computations that would be required if all

shot and receiver statics were updated simultaneously. The ease with which these local

calculations are performed is central to the success of the Metropolis algorithm.

In summary, the Metropolis algorithm sequentially cycles through a two-step
scheme for each parameter: (1) a random guess for the static shift is made; then (2) a
decision is made to either accept or reject this new guess. In Chapter 4, I show a result
of using the Metropolis algorithm to solve for statics in synthetic data. The results are
positive, but in my tests it became clear that many computations are wasted in the
evaluation of random guesses that have a high probability of being rejected. My imple-
mentation of the Metropolis algorithm makes random guesses that are uniformly distri-
buted between some predetermined maximum and minimum value for each static.
(Other schemes are possible.) For the synthetic data example, this range spanned 21
values. The field data example in Chapter 4, however, required a wider range which
proved to be too large: too many computations were wasted in the evaluation of unac-

ceptable guesses. I therefore developed an alternative technique, described below.
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3.3.3 Transforming correlation to probability: random moves in one step

To avoid low acceptance-to-rejection ratios, the second method computes the rela-
tive probabilities of acceptance for each possible move before any random guesses are
made. Instead of making random guesses that are then accepted or rejected, the
second method simply produces weighted guesses that are always accepted. In contrast

to the two-step Metropolis method, this is a one-step technique.

The one-step method sequentially “visits” each shot and receiver static X,,, as
does the Metropolis algorithm. Then, instead of calculating the stack power for a sin-
gle random guess, the one-step method calculates the stack power for each of N possi-
ble shifts. To determine the new value for X, , the method then draws a random

number from a probability distribution derived from these stack-power calculations.

Denote the shot and receiver statics by a single vector-valued random variable
X={X,},m =1,---, M. Any shot or receiver static X, can assume any of N
values 7,, p =1, -, N. The stack-power function for the m th shot or receiver
static is denoted by ¢, (7,) [which is defined precisely in equation (3.8) below.] To
choose a new value for X,,, the one-step statics algorithm draws a random number

from the probability distribution

) = NeXp{ n(m)/ T} (3.7)

>3 exp{ ¢, (7,)/T }

p=1

This new value for X, is always retained and the stack is always updated, regardless
of the change in stack power. As the power g¢,, (7,) increases, the probability that the
algorithm chooses X,, = 7, also increases. Choices that decrease power, however, are

also possible; they are just less likely.

The results in the Appendix (discussed in §3.5) show that the one-step technique
simulates thermal equilibrium, as does the Metropolis algorithm; thus the one-step
technique is fundamentally equivalent to the Metropolis algorithm. The similarity of
the two techniques can be seen by considering the effects of each method on a single
parameter. If one were to employ the two-step Metropolis rules many times to repeat-
edly update X, , then the initial value of X,, would eventually be “forgotten,” and the
frequency of occurrence of each possible 7, would be proportional to the probability
distribution (3.7), which is also the distribution from which the one-step technique
draws random moves. Repeated application of the Metropolis rules to X,, simulates
the physical effects of a heat bath surrounding X,,. In this heat bath, the “‘states” of

Xmn (e.g., magnetic spins) would be distributed with equilibrium probabilities
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proportional to exp{-E(r,)/T }, where E is energy and 7, denotes some physical
parameter of interest. Thus, sampling from the probability distribution (3.7) is
equivalent to sampling from a local equilibrium distribution. Sampling from these local
equilibrium distributions for each X,, considerably aids the approach to global equili-
brium, which must be approximated at a low temperature if simulated annealing is to

yield a reasonable result.

In the literature of Monte Carlo simulations in statistical physics, the one-step
technique is known as the heat-bath method (Rebbi, 1984; Creutz, 1984). Recently,
Geman and Geman (1984) adapted this method in their application of simulated

annealing to image restoration.

The calculation of the probability distribution (3.7) is not as difficult as it may
seem. As Ronen and Claerbout (1985) have shown, crosscorrelation functions can be
substituted for explicit power computations when statics corrections are estimated by
stack-power maximization. Therefore, for computational convenience, I compute
qm (7, ) by performing crosscorrelations as follows. Designate the stacked trace formed
by the sum of each trace in CMP gather k by y; (¢). Reference traces are the partially

stacked traces
vl = w(t) - di(t), ko= (i +7)/2,

where d;;(¢) is now the NMO-corrected trace associated with the ¢th shot and j th
receiver. The trace y;(¢) is the sum of all traces in CMP gather k except trace d;; (t).
Suppose that the m th element of the parameter vector is the shot static corresponding
to shot ¢ (or the receiver static corresponding to receiver j). To compute g, (70 ),
crosscorrelate each trace in the shot (or receiver) gather against the partial stack of the
CMP gather in which that trace is a member. Then sum each of these crosscorrelation
functions to obtain a surface-consistent average, and normalize the result to compen-
sate for any spatial variations in amplitude. Written formally, this surface-consistently
averaged, normalized crosscorrelation function is

am (Tp) - A—I/E Z Rl] (Tp) ’ (38)

1,j€C,

where R;; (7, ) is the crosscorrelation function given by

Rij(ry) = Pw'(t) dij(t + 1), (3.9)

t

A is the normalizing constant

A=z E[dij(t)]ZJ[ Y YR

i,jEC, t i,jEC, 1
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FIG. 3.2a. A normalized crosscorrelation function.

and C,, denotes all shot-receiver (¢, ) pairs associated with the traces in shot gather ¢
(or receiver gather j). In my implementation, I perform the summation in equation
(3.8) implicitly by using a method described by Ronen and Claerbout (1985): a single
unstacked trace formed by the concatenation of each d;; (t) is crosscorrelated against a
single partially stacked trace formed by the concatenation of each ykij(t ). The result-
ing crosscorrelation function ¢, (7, ) is then inserted into equation (3.7). The probabil-
ity distribution (3.7) can then be viewed as simply a normalized crosscorrelation func-

tion that is scaled by T, exponentiated, and then scaled again so that it has unit area.

The temperature, T, determines the relative probabilities of each possible static
shift; this relationship is illustrated by the sequence of functions in Figures 3.2a-c. Fig-
ure 3.2a 1s a normalized crosscorrelation function computed from the Wyoming data
introduced in Chapter 2. Conventional statics algorithms would usually choose the lag
(66 ms) that yields the maximum correlation for use in some estimation scheme.
Because this lag might correspond to a skipped cycle, however, the one-step method
considers all possible lags, and favors each lag by the weights given in equation (3.7).
Figure 3.2b shows the transformation of the crosscorrelation function of Figure 3.2a
into the probability distribution (3.7), with T = .044. The modes (peaks) of the
resulting probability distribution correspond to the peaks of the crosscorrelation func-

tion. Figure 3.2¢ depicts the effects of a lower value for T, now .013. The greatest
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FIG. 3.2b. Transformation of the crosscorrelation function in Figure 3.2a into a proba-
bility distribution using equation (3.7), with ¢, taken to be crosscorrelation, and
T = .044. Note the general correspondence of the peaks and troughs in Figures 3.2a
and 3.2b.
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FIG. 3.2c. Transformation of the crosscorrelation function in Figure 3.2a into a proba-
bility distribution using equation (3.7), with ¢, taken to be crosscorrelation, and
T = .013. Compared to Figure 3.2b, the tallest peak is now strongly accentuated
relative to the other peaks; thus the lag (56 ms) corresponding to that peak is strongly
favored when random samples are drawn from this distribution.
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peak Is now strongly accentuated relative to the others. As T goes to zero, this peak
becomes a spike of unit height. Thus the zero temperature, or “quenching” algorithm,

always picks the greatest peak, and would always arrive at a nearby local minimum of

the objective function.

The spikiness of the probability distribution (3.7) is controlled not only by T, but
also by the quality of the stacked traces against which crosscorrelation is performed.
Thus, in order for the algorithm to converge to an approximation of the best possible
stack, 1t is important that T be chosen to be high enough to allow the stack to change
significantly, yet low enough so that the probability distribution (3.7) is sufficiently
spiky when the correct solution is nearly achieved. The greatest advantages of the
one-step method are incurred when the distribution (3.7) is composed of only a few
spikes and near-zero values elsewhere. The correct value for X, can then be located
after only a few iterations (one iteration includes one attempt to change the value of
each parameter). With the two-step Metropolis technique, however, guessing and

accepting the correct value can take several hundred iterations or more.

Although it might appear that each calculation of the probability distribution
(3.7) would require about N times the computation that an equivalent Metropolis
move requires, modern array processors allow the crosscorrelation functions to be calcu-
lated rapidly at a cost that is a modest function of the number of lags. Thus the addi-
tional information that is contained in the crosscorrelation function more than compen-

sates for the cost of obtaining it.

3.4 GENERAL ISSUES OF PRACTICAL IMPORTANCE

Statics estimation by simulated annealing has some important general properties,
regardless of which technique (Metropolis or heat-bath) is chosen. I discuss below three
(unrelated) general issues of practical importance: the specification of T, parallel com-
putations, and the absence of subsurface-consistent parameters in the objective func-
tion. In the next section I discuss a general issue of theoretical interest: the representa-

tion of the algorithm as a Markov chain.

3.4.1 The specification of temperature

Many schemes for decreasing temperature are possible. Geman and Geman (1984)
proved that simulated annealing converges to the global minimum for cases in which
the temperature T} in the kth iteration is no lower than 7'y/logk, where the initial

temperature T depends on the difference between the greatest possible energy and
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least possible energy. As Geman and Geman point out, this rate of decrease is too slow
to be practical (because the required T is too high). Regardless of the temperature-
reduction scheme used, one concept is common to all implementations of simulated
annealing: experimentation is necessary. Moreover, because experimentation is needed,
1t is unlikely that a temperature-reduction scheme used for one problem is applicable to
another. I make several comments on experimentation and the choice of T in Chapter
4. My experimental results indicate that a single, carefully chosen value for T can be
sufficient for convergence in a statics estimation problem. This value of T is set just

below a temperature that is roughly analogous to a critical, or freezing temperature.

3.4.2 Parallel computations

Hinton and Sejnowski (1983), Geman and Geman (1984), and others point out
that simulated annealing can be implemented in parallel. Parallel computers are collec-
tions of processors that operate simultaneously and independently while maintaining a
continuous flow of information from each processor to the others [or a subset of the
others; see Hockney and Jesshope (1981) for a survey]. In theory, if there were N pro-
cessors (say, one for each shot and receiver static), run time could be reduced by a fac-
tor of N. This is an important point. Kirkpatrick et al. (1983) report that the run
time of simulated annealing is nearly linearly related to the number of parameters
being estimated. Parallel computations then not only reduce computation time by a
considerable factor, but they can also allow large problems to be solved in virtually the

same length of time that small problems require.

3.4.3 Subsurface-consistent terms

The linear equations used by Wiggins et al. (1976) and Taner et al. (1974) include
a term that compensates for subsurface structural variations. These authors use a
structural term because they measure time delays between traces associated with
different CMP gathers. Because the power computations in equations (3.5) and (3.6)
and the crosscorrelation calculation in equation (3.9) are performed within CMP gath-
ers, however, no structural variation need be compensated. This is true for stack-
power maximization schemes in general, such as the one presented by Ronen and
Claerbout (1985). Power maximization schemes do not need to decompose structural
and near-surface variations. Long wavelength statics (statics that vary slowly relative
to the length of the seismic cable), however, are poorly resolved by the data and are
generally suspect, as they are in all statics estimation methods [see Wiggins et al.

(1976) or Ronen and Claerbout (1985) for more details].
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A second subsurface-consistent term used by Wiggins et al. (1976) and Taner et
al. (1974) concerns residual normal moveout. Although ignored here, residual normal
moveout 1s still an important parameter. Because data must be NMO-corrected prior
to statics estimation, the NMO velocities will undoubtedly contain some error. Resi-
dual normal moveout can be estimated using simulated annealing, but the computa-

tional burden would probably far outweigh any benefits.

3.5 THE ALGORITHM AS A MARKOYV CHAIN

In the remainder of the thesis I refer to the statics algorithm as “Monte Carlo
statics estimation’ or ‘“statics estimation by simulated annealing” when I discuss con-
cepts applicable to both the one-step and two-step techniques. In this section, I formu-
late the Monte Carlo statics estimation algorithm as a Markov chain. The key issue in

the formulation is the steady state of the Markov chain.

The following notation is used. The unknown shot and receiver statics are again
denoted by X = {X|, Xy, -+, Xy }. X,, is taken to be a random variable; z,, is its
value. Each parameter may assume only one of N distinct values; thus there are N
possible values for each z;. A state x; (note boldface) is any combination of values
assumed by the entire set of parameters X. Because there are M parameters that may

each assume one of N values, there are a total of N™ distinct states of the system.

3.5.1 Markov chains

The basic objective of the Monte Carlo statics algorithm is to generate states X

from the probability distribution

exp{-E(x;)/ T}
Yoexp{-E(x;)/ T} ~

JEA

II; = P(X=x;) =

j (3.10)

where E is the negative stack power, and j € A = {1,2, .., NM} If x; were the
configuration of a physical system, £ its energy, and T scaled by Boltzmann’s con-
stant, then equation (3.10) would be identical to the Gibbs distribution in equation

(3.4).

The problem, then, is to generate states x; with probability IT;. This generation
is called importance sampling (Fosdick, 1963; Hammersley and Handscomb, 1964).
Because there are N™ terms in the denominator, the {II; } cannot be explicitly com-
puted. However, a Markov chain that generates random states from the probability

distribution (3.10) can be constructed. If this random generation is performed with



-36-

T <<E(x), then states that yield the greatest stack power can be selectively favored
due to the exponential weighting, and approximations of the best stack can be gen-
erated. This selective favoring is the essence of importance sampling: the more prob-

able (or important) a state is, the more likely it is to be generated by the Markov

chain.

A Markov chain is a sequence of states in which the probability of each newly
generated state depends only on the previous state, not on any others. The Monte
Carlo statics algorithm is a Markov chain in which each state is a new set of timing
delays for each shot and receiver. Consider these states to evolve over a sequence of

iterations indexed by ¢. The notion of immediate dependence is formally expressed by

P(Xt :X]' 1X¢_1:X c 7X2:xi27 X]_:Xl'l) = P(Xt :X] |Xt_1=x,-t_1) . (311)

%y :
It T is constant, the probability of going from any state x; to any state X; in one
iteration is stationary in time, and is given by the transition probability

Pij = P(xi—+x]-) = P (X, =X | X =x;) . (3.12)

Most important developments in the theory of Markov chains concern the evolution of
a chain over time. Generalizing equation (3.12), let pij(") be the probability of transi-

. in n lterations:

tion from x; to x;

pi](n) — P(Xt =X; lXt—n :xi)

Binder (1979, 1984), Hammersley and Handscomb (1964), Fosdick (1963), and Metropo-
lis et al. (1953) show that as n — oo the probability of the Metropolis algorithm going
from x; to x; is independent of the initial state x;. I derive in the Appendix a similar
result for the one-step method. For both methods, as n — oo the transition probabili-

ties reach a unique steady state, described below.

3.5.2 The steady state

The Monte Carlo statics algorithm exhibits the limit

I, = lim pf{") |

j oo L1
where {II; } is the Gibbs distribution (3.10). This result is proven for the Metropolis
algorithm in the references cited above, and is derived for the one-step statics algo-
rithm in the Appendix. {H]-} is called the equilibrium, or steady-state, distribution of

the Markov chain. The term equilibrium is used here as it is in physics: it describes

the behavior of the system after the system has “forgotten’ its initial state. Because
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the low-energy (high-stack-power) states are exponentially favored by the distribution
{11, }, equilibrium at low T approximates the global minimum. Thus the algorithm is
theoretically sound if it is run at low T for a sufficiently large number of iterations.
Yet the number of iterations required might be impractically large. How, then, does

one reconcile the theory with practice?

Reconciliation begins by experimentation. In principle, it is easy to see why the
algorithm should work if 7' is lowered sufficiently slowly so that equilibrium is attained
for every T —this is how Kirkpatrick et al. (1983) originally proposed the concept of
simulated annealing. The experimental results illustrated in the next chapter, however,
show that the choice of an appropriate low constant temperature is indeed practical:
one need only wait for equilibrium at this one temperature. As described in the next
chapter, the exact specification of the low T is determined by previous experimenta-
tion. When equilibrium is attained at low T, the algorithm locates a deep (if not the
deepest) minimum. The success of this approach depends on how rapidly equilibrium
can be reached. In general, the approach to equilibrium slows down as either the tem-

perature decreases or the number of deep minima increases.



