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ABSTRACT

Where the near-surface of the Earth is irregular, seismic signals reflected from the
underlying subsurface are degraded. The most important effects of near-surface
anomalies are often traveltime delays called statics. Large near-surface anomalies can
cause large statics that grossly distort the apparent structure of the Earth in reflection

seismic sections.

To estimate (and then remove) statics, traveltime delays are measured by
crosscorrelating seismograms. When statics are large, however, the lag that yields the
maximum value of a crosscorrelation function may be an unreliable indicator of the

true time delay. Gross errors are common.

Statics estimation is usually posed as a linear inverse problem. However, because
statics estimation is actually a nonlinear inverse problem, linear approaches to statics
estimation rely implicitly on an initial guess. I present a method for the estimation of
statics that is independent of an initial guess. Statics estimation is formulated as a
nonlinear inverse problem in which the estimation of the optimal statics corrections

requires locating the global minimum of a multidimensional objective function.

Global optimization must avoid entrapment in suboptimal local minima. To
achieve this goal, I adapt the method of simulated annealing, a Monte Carlo method
that mimics the physical process by which a crystal is grown from a melt. Geophysical
parameters are treated as if they were the microscopic components of a physical sys-
tem. The method randomly generates new values for these parameters in a way that
simulates thermal equilibrium; a control parameter analogous to absolute temperature
determines the freedom with which the parameters’ values are changed. A non-zero
temperature allows perturbations that can either decrease or increase the objective

function.
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The most efficient form of the new statics estimation algorithm also uses
crosscorrelation functions. Instead of picking the peaks of crosscorrelation functions to
estimate time delays, the new method transforms the crosscorrelation functions to pro-
bability distributions. Estimates of time delays are then randomly drawn from these
probability distributions. This procedure is repeated iteratively until a stable solution

is reached.

Results are demonstrated on synthetic data and field data from the Wyoming

Overthrust belt. Further applications of the method are proposed.
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