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A simple geometric derivation of the ray spreading factor
Peter Mora

INTRODUCTION

Zero-th order asymptotic ray theory, or geometric ray theory, predicts ray ampli-
tudes on the assumption that no energy passes through boundaries of ray tubes. It is a
high-frequency approximation that is accurate in the “far field”. The merits of ray
theory are that it gives a good intuitive first-order understanding of wave phenomenon
and 1t provides an analytic expression for amplitude which can be computed rapidly.
The term “ray spreading factor” is used to denote the geometric factor that quantifies
the amount of ray tube spreading between some initial and final locations on a given
raypath. This paper gives a simple derivation of the ray spreading factor for a medium
consisting of homogeneous regions separated by smooth two dimensional boundaries.
The derivation is based on elementary calculus, geometry and algebra and is therefore
easy to understand intuitively. The expressions obtained match those found in the
literature and have been used in this SEP report (Mora, Elastic inversion using ray
theory). Refer to Cerveny and Ravindra (1971) or Hubral and Krey (1980) for a
different derivation that allows three dimensional boundaries. The worth of the current

paper is the simplicity of the derivation.

There are two main parts to the ray spreading derivation: (1) determining the effect
of a curved interface on the wavefront radius of curvature and (ii) finding how the ray
spreading factor changes along a raypath passing though a series of homogeneous

regions. Given the result of (i) it is easy to derive (ii), which is the final result.
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EFFECT OF A CURVED INTERFACE ON WAVEFRONT CURVATURE

Consider a ray of known radius of curvature incident upon a curved interface. The
wavefront radii of curvature of the scattered rays required in the ray spreading computa-
tions can be derived from the geometry and using Snell’s Law. For convenience, the fol-
lowing derivation will be restricted to a refracted ray, although later the results will be

generalized to include reflected modes.

inter f ace refracted ray

incident ray

FIG. 1. Geometry of a ray tube incident on a curved interface.
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Observe the geometry in figure 1, which depicts a curved interface with an incident
ray and a single refracted ray. The incident and scattered ray tubes are drawn with a
finite width but all infinitesimal angle increments should be considered in the limit as
tending to zero in the proceeding development. Unprimed quantities in the following
equations refer to the incident ray, while primed quantities indicate the refracted ray.

The following expressions are apparent from the geometry and Snell’s Law.

r'dQ) = AQ (1a)
rdQl = AQ (1b)
rd¢ = A¢ (1c)
0 = ¢-0Q

0+do0 = ¢+dop-Q-dQ

From the above equations

d0 = doé-dfd (2a)
Similarly,
dff = dé-ds¥ (2b)
Also, from the geometry in figure 1
AQ = Agcost (3a)
AQY = Agcost' (3b)
And from Snell’s Law
s‘in0 _ §in(0+d ) _ v (4)
sin¢’ sin(6'+-d ¢') v!

Equations (1) through (4) summarize the geometry and provide the basis for the ray
spreading derivation. An equation for the wavefront radius of curvature of the refracted

ray r' in terms of that of the incident ray r is obtained by rearranging (1a) and using
(3b), (3a) and (1b).

ol A Adcost _ AQcost rdQcosG’ (5)
aqy dqy d Y cosh d Y cost

The infinitesimal angle d{) may be written in terms of d by rearranging equations
(2b) and using (1c), (3a) and (1b).

dQ — dé-df — -A}T“S_do'
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AQ g _ _rdQ

R cosO R cos6

4 (6)

The remaining unknown d¢ is eliminated by expanding Snell’s Law (equation (4)) as a
truncated Taylors series in order to remove angular infinitesimals from the trigonometric
arguments.

v __ sin(0+df) _  sinf + dfcosf
v! sin(¢'+d ¢') sin¢ + d ¢'cost’

This equation can be rearranged to give an equation for d ' in terms of d 6. The result-
ing expression for d ¢ is now substituted into equation (6) followed by successive use of
equations (4), (2a), (1c), (3a) and (1b).

!
“—(sinf + d 6cosf) — siné’
g = 2

cost’

’U,

v cosf’

(sind + d fcosd — sind)

v'cosfd 0
v cost!

v'cosd
v cosd’

v'icosd ( Ag
= — - dQ
|5 40]

(d¢ - dQ)

v cosf!

v'cosl AQ
vecosd | R cosf

dQ)

v'cosf r
vecosd | R cosf

qdn (7)

Substituting equation (7) into equation (6) to eliminate d ¢’ gives

! !

dY = d0 r v r v' cosf
[Rcosﬁ v R cosf + v cosf (8)

The refracted radius of curvature r’ in terms of the incident radius of curvature r is
obtained by substituting equation (8) into (5)
v! cos®d

-1
P r[— + ! cosf — icos9] ) (9)
v cosZd R cos?¢' v

Equation (9) gives the radius of curvature of a refracted wavefront in terms of that of

the incident wavefront. Note the convention that the interface radius of curvature R is
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positive when the interface is concave relative to the incident ray, and negative when the

interface is convex relative to the incident ray.

For a reflected ray the geometry and equations remain identical except that the
reflected scattering angle would be negative of the refracted angle so equation (2b) would

be replaced by
d¢¢ = dQY' -d¢
so equation (6) becomes

rd Q2
R cosf

QY = +do

This leads to the equivalent of equation (9), for radius of curvature of reflected wave-

fronts

v! cos®0 r v! -
rl = r[——— s— + 5 [—cosB’———cos0]}
v cos“f R cos“d’ v

The negative must be taken of the above expression because the reflected ray reverses
direction. This ensures the correct sign for the wavefront radius of curvature is retained,

namely positive for an expanding wavefront.

Therefore, the equation describing the effect of a two dimensional curved interface

on wavefront radius of curvature is

-1
! 2 !
plo— v cosd r 2 cost +/- cosﬁ'] ) (10)

v cos?d Rcos?d | v

where the plus sign is used for reflected rays while the minus sign is for refracted rays.

The equation requires the following quantities:

r = incident wavefront radius of curvature where positive represents
an expanding wavefront and negative a collapsing wavefront

R = interface radius of curvature, respectively positive or negative when
the interface is concave or convex relative to the incident ray

f = incident angle

¢' = scattering angle

v = incident medium velocity

!

v’ = scattering medium velocity
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A special case of (10) occurs when the ray is reflected without changing mode type.

In this case v/ = v and ¢ = 0 so the equation for wavefront radius of curvature is

-1
’ __2r 1
r r[l RcosH] (11)

RAY SPREADING THROUGH A SERIES OF HOMOGENEOUS LAYERS

Consider a ray propagating through a series of homogeneous layers. As it travels
through each layer, the ray tube either spreads as the wavefront diverges or contracts as
the wavefront converges. The ray spreading parameter S is directly related to the cross
sectional area of the ray tube. For a two dimensional medium, § may be expressed as
the product of an “in plane” and “out of plane” spreading parameters, respectively
denoted S;, and S,y . (“in plane” refers to the ray spreading being in the plane of the

two dimensional structure.)
Because each layer is homogeneous, the wavefront radius of curvature after the ray
has propagated through 7 layers is
i = rlia+d; (12)

where d; is the distance between the (¢ —1)-th and the i-th intersection points (see figure

2). From equation (10) we have the scattered wavefront radius of curvature at the i -th

ray-interface intersection,

rly = /A (13)
where A; is defined as
v'!; cos®0; r v';
Ay = e > cosl; +/- cost; (14)
v; cos“b'; Rcos™d; \ v;

From figure 2, the ray spreading parameter at the n-th intersection point is given by
Sin = 1,dQ, /dQy (15)

where d 2, refers to the infinitesimal angular width of the ray tube at the n -th intersec-
tion point. By recursive substitutions using equations (12) and (13), the wavefront radius

of curvature at the n-th intersection point r, can be obtained
'y =— rn—l/An—l + d,

= (rno/Bn 2+ dy_1)/A, | + d, (16)
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FIG. 2. Geometry of a ray tube passing through a series of homogeneous layers
separated by by curved interfaces

n-1 n-1
= = d, + ¥4 [[1/4;

i=1  j—i

From equations (1) and (3) we have
dY _ rcost —p cost
dQ r!cosd cosf

Hence, by recursive substitution, the angular ratio in equation (15) is

dQn A COSG’n_l dQn—l

49y "Leost, 1 d

n-l o costy

= - = J]A

k
k=1  cosby
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Substituting equations (17) and (16) into (15) yields the desired expression for the in

plane spreading parameter S;, .

n—l n-1 n—l COSG'L.
Sy = [d,. + Y d T11/4; | T A
] 1 k=1

i=1 =i cosfy
Multiplying out the A products yields
n i-1 n-1 Cosolh
S, — Id + Y d A-] 18)
' ' i§2 1 J'I;Il 7 ) i<y cosby (

A useful special case of equation (18) occurs when a two way path has coincident upgo-
ing and downgoing paths so the cosine product in (18) is unity. This special case would

apply to the simulation of zero-offset wavefields.

The out of plane spreading parameter can be obtained from equation (18) by set-

ting 6 and ¢ equal to zero and the interface radius of curvature R , to infinity. Thus

SO

Sout = '—1" E di Y (20)

Vyi=—1

Finally, the cross sectional area of a ray tube is proportional to the product of the

in plane and out of plane spreading parameters, so
S _ Sin Saut (21)

This cross sectional area is termed the “ray spreading parameter” and is inversely pro-
portional to the energy density. Hence, the ray amplitude is proportional to the inverse

of the square root of the ray spreading parameter.

constant _ constant

\/§ - V Sin Sout

The meaning of a negative value for Sj, is that the ray has passed through a two dimen-

ray amplitude (22)

sional focus. This negative value for S;, implies a purely imaginary ray amplitude (in

the frequency domain) and hence a 90 © phase shifted signal in the time domain.
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NOTE ON TPOW

The wave divergence correction is not the first power of time unless velocity is con-
stant (see Newman, 1973). This correction is the factor that removes the effect of wave
divergence from the seismic amplitudes. Hence, from equation (22), it is clear that the
ray-theoretical spreading correction is the square root of the ray spreading parameter .
The formulas in this paper give the ray spreading parameter in the presence of curved
mterfaces. For the special case of a vertical ray passing through a medium in which the

velocity depends only on 2z, we have from equation (20)

T

VE = 8, = L [o?(t)at (23)
v(0)

Therefore, the spreading correction is proportional to v,2 t. This is in agreement with

Newman’s results.
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RESPONSIBILITIES - September 1984

Problem Primary Responsibility | Backup Responsibility
VAX, DEC disks Dan Stew
UNIX Stew Chuck
SI disks Joe COCORP
AP Shuki Pete
*Varian Erik Li
*Imagen | Kamal /Marta Chuck
*line printer Marta Dan
AED Joe/Rick Chuck
Gigis Stew Jon
Envision  Joe Jon
Datamedias Pat Kai
modems Toldi Dan
*tape drives Jill Stew
backups Toldi Shuki
tape archives Chris COCORP
plot program maintenance Joe/Stew -

air conditioning, therm Pete Chuck/Paul
*cleaning - room 467&471 COCORP COCORP
TEX maintenance Kamal Marta
Troff maintenance Bill Chuck

* Items requiring paper, ribbons, tapes, soap suds, etc. The person responsible for this item is

also responsible for notifying Susan when supplies get low.
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