Chapter V

Velocity Stack Stochastic Inversion

5.1 Introduction: the problem of unknown model variances

in section 1.4 the stochastic inverse was mentioned as an alternative to the
generalized least squares inversion of the system of equations (1.4). Aki and
Richards (1980, section 12.3.5) define the stochastic inverse as the solution to a
set of normal equations weighted by an additional diagonal term, which is inversely
proportional to the expected variance of the solution (equation 1.7). The normal
equations, with the diagonal term, are commonly derived from the maximum a pos-
teriori (MAP) estimator, in which Gaussian assumptions are made concerning the
various probability densities involved. The next section will define the MAP estima-
tor and outline such a derivation. But the advantage to formulating the stochastic
inverse as a MAP estimator is that the constant diagonal term in (1.7) can be gen-
eralized to an arbitrary diagonal matrix. This generalization is made by simply speci-
fying a model variance that differs from point to point in the model domain. Similarly,
non-constant noise variances in the data domain may be incorporated into the nor-
mal equations with a diagonal weighting term. As long as the model and noise vari-
ances are specified a priori, the modified system of "normal equations”, derived from

MAP estimation, remains linear.

The requirement that model variances be specified beforehand is an overly
restrictive one. This is the chief limitation in the use of the linear stochastic
inverse: a priori model variances must be estimated beforehand, without knowledge

of the solution, yet these variances can have a great effect on the final solution.
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In velocity stack inversion, this requirement is equivalent to predicting which veloci-
ties will be present in the solution. In our case, we would like to assume nothing a
priori about the solution, apart from specifying a realistic range of velocities to be

encountered.

Estimating a priori noise variances, on the other hand, is not much of a problem
because the common-midpoint gather (in the data domain) can be readily examined
for noise. Independent noise analyses, recorded in the field, may be available.
When there is a problem with a noisy trace, it may be ignored by setting its noise

variance to infinity.

One way out of the problem of having to make a priori assumptions about model
variances is by a bootstrap process: iteratively update the estimate of the model
variances simultaneous with the solving of the MAP estimator. Theoretical argu-
ments in support of such a procedure are given in the next section. Making the
model variance functionally dependent upon the final solution turns the MAP estima-
tion functional into a parsimony or sparseness measure. Solutions to the MAP esti-
mator will have a tendency to be driven to sparseness: the envelope of the solution
in the model domain will tend to cluster into a few, large peaks, but elsewhere will
tend to be very small. Sparseness is therefore a desirable property for the velocity

stack inverse to have.

A linear system of equations as large as (1.7), and even more so the
corresponding nonlinear problem of bootstrapped model variances, cannot be solved
directly, considering the dimensionality of the problems that we are dealing with. For
their solution, a gradient descent algorithm shall be developed later in this chapter.
Some examples of velocity stack inversion on field data shall follow, so that a com-
parison can be made between the stochastic approach and the generalized inverse

approach to velocity stacking.
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6.2 Parsimonious inversion and MAP estimation

In this section we shall derive the nonlinear system of equations that, when
solved, yields the data set's so-called stochastic inverse in velocity space. In the
terminology of chapter 2, this is a type | inverse: the inversion is applied in order to
get a velocity panel u from the data d. For the rest of this chapter, the term sto-

chastic inverse is generalized to mean the MAP estimator derived here.

MAP, or moaximum a posteriori, estimation is defined to be the maximization
of p(u]d), the conditional probability density of u given d, and is produced by varia-
tion over the model parameters u. The functional relation between u and d is given

by d = Lu + n. Applying Bayes!' rule,

pluld) = (dp‘z)d) (u) (5.1)

Now p(d]|u), the conditional probability of d given u, can be interpreted as the prob-
ability density of the noise, p(n), since the random variable d is the sum of a deter-
ministic Lu and a random variable n. The probability density p(d) enters only as the

normalizing term

p(d) = fp(dlu)p(u)du (5.2)

Thus, maximizing the a posteriori model density p(u|d) is equivalent to maximizing
the product of the noise density p(n) with the a priori model density p(u). Let us
now assume the probabilities of equation (5.1) to be in exponential (actually Gaus-

sian) form; this fact makes it convenient to define the following functionals:

Sy = —Inp(u|d) (5.3)
Sp = ~Inp(uw (5.4

The MAP estimation problem becomes the minimization problem
min (Sy + Sp) (5.5)
u

Let us assume independent Gaussian noise for p(n):
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1 ~-;—-n7' diag(o,;2)m

1

SN = —In

(Lu —d) + Gy (5.6)

—;—-(Lu — d)Tdiag

L
on
If g, is constant, the factor U,,‘z may be taken out of the diagonal term in the center

of (6.6); a uniformly weighted least squares functional is left. The gradient vector

gy of the noise functional Sy is then given by its elements:

65‘N 1
o= —% = — 1.7(Lu - d), (6.7)
Iwi duy LS '

where the subscript i is an index to elements in model space. The normal equations

L7Lu = L7d result when the gradient is set to zero.

If the a priori model density p(u) is similarly assumed to be independent and
Gaussian, Sp is seen to equal u”o2u/ 2 where g® refers to the variance (a diago-

nal matrix) in the model domain. The normal equations (5.7) are modified to become

0 =g = 1Tu+ 1—2LT(Lu—d) (5.8)
o o,

This is the proper stochastic inverse. The diagonal of the normal equations is
weighted with the noise-to-signal ratio o,zl/ a?, and enough weighting to the diago-
nal will guarantee that the solution u to (5.8) exists and is unique.

The variance ¢® in equation (5.8) is a deterministic variable. An alternative to
a deterministic variance is to allow ¢ itself to be a random variable, able to take on,
say, N discrete values {0, ] from k = 1 to N. Identifying o with a random variable
makes sense in the present case, because precise a priori knowledge of the vari-
ance of the solution will never be available. As a consequence of the random nature

of a,

p(u) = fp(a)p(ula)da (5.9)

Now make the following assumption, that the joint conditional density p(u]o) is
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independent (correlation free) and Gaussian with zero mean:

1 ._u_"
= ] | o) = | I 5.10
P(UI o) i p(ul l 9:) i \/2_7]'0'1; exp 20'122 ( )

When ¢; is made a member of the class of values {o; ], points in the model domain
are implicitly partitioned into N distinct populations. Assumption (5.10) claims that
each population (say the kth) has a Gaussian distribution, with a unique variance

a,f, and zero mean.

No constraints need to be put on the density p(g) at the moment. Specifically,
p (o) does not have to be separable into a product of individual probability densities

p;(w;), one for each point u; in model space.

Let us now calculate the gradient gp of the parsimony functlional Sp in

equation (5.4). The ith term of the parsimony gradient is

_9Sp 1 8
gr = u; p(u) By, p(u)
1
= -—5—(:'-)—— p(a) aui p(ula)da (5.11)

Inserting the expression for the partial derivative with respect to u; of p(u|o)

(equation 5.10), yields

_ _1 Uy
gp = R p(o) o? p(ujo)da
=f_"i2(a)2(u|a) do
of p(u)
= uif;? p(oju)do (5.12)

Bayes' rule has been used in equation (5.12) to define the new conditional density
p(o|u). The last integral of equation (5.12) defines the mathematical expectation

of o, conditional upon u:

¥2 = E[‘_zlu] =f012 plolu)de (5.13)
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Thus

I = Wi (6.14)

The mathematical expectation in (5.13) allows ¢; to have an explicit functional
dependence on the entire model domain u, not only on the corresponding point ;.
The stochastic inverse can now be generalized to be the solution u of the set of

equations resulting from setting the total gradient g = gp + g, to zero:

0=g9= u+ ——LT(Lu—d (5.15)
o [+ 1y

When no functional dependence of & on u is specified, the equations are linearized
and become equivalent to the stochastic inverse (in the strict meaning) of equation

(5.8).

5.3 Parsimony criteria

The selection of a parsimony criterion has now been reduced to the choice of
an expression for the conditional expectation E[o; > |u]. Itis logical to assume that
the variance a,? at each point in the model domain depends on a local weighted

average of u about that point:

%% = E[o7?]| Ywy uf, j neari] (5.16)
i

where the w,; are positive normalized weights, so that ijij = 1. Because the
model domain by nature is two dimensional, it is convenient to index the fields o and
u by slowness p and time 7. The specification of (5.16) makes & a smooth function

of u. For the indices p and 7, it is sensible to make the following smoothness

assumptions:

(A) '&‘;.T does not depend on values u,, .- from adjacent traces p' # p.
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(B) '&‘;T depends only on values u, - within a limited time window about index T.

In other words, 3}?, is only a function of w, ,,; over the time window j = —T to 7.
The simplest rule in the form of equation (5.16) is a direct estimate of the variance

from a local patch of data:

7 ~1
~— 1
Gpl.z,-(ll) = -27?2 upz.”j (5.1 7)
j=-T

With this rule, points in the velocity domain can be assigned to one of a discrete,
finite set of populations; the '&‘5,7 found by means of equation (5.17) can be
rounded to the nearest member of a set of allowed variances {of}. Each member of
this set represents a variance of the corresponding Gaussianly-distributed popula-

tion of points.

Assumptions (A) and (B) are meant to simplify the parsimony criterion E[op"_27|u]
by making the estimate 'Er‘;_, independent of points far away from (p,7). Recall that
the dependence of E[g,7|u] on the entire model u is a direct consequence of
assuming that the joint density p (o) is nonseparable in model space. That is, corre-
lations are allowed between the various random variables ?7‘5_, over the velocity
plane. Allowing only positive correlations between points that are close neighbors,
results in expectations of the form of equation (5.16). Rules like equation (5.16)
force the members of a population to group closely in the velocity plane: because

the sum in equation (5.16) varies smoothly from point to point, 92 _ also varies

T
smoothly. So when we distinguish between only k discrete populations {of}, '5‘5_.,

must be rounded to the nearest member UE, and equation (5.16) will tend to put
points in a local neighborhood into the same population, identified by the variance
of. Equations (5.16) and (5.17) are examples of what we may call a clustering
criterion, because of their tendency to favor the clustering of points who are

members of the same Gaussian population.
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To get a better idea of how the conditional expectation E['Efp—,%] u] gives parsi-
monious behavior to u, let us assume for the moment that clustering rules such as
equation (5.16) are not applied. We have yet to define precisely what characteris-
tics a ''parsimonious’ solution u exhibits; a parsimonious solution to the equations
(5.158) is pictured as having relatively few large elements scattered in a sea of

small elements. A more precise definition of parsimony will soon be given.

By saying that no clustering is allowed, we mean that the joint density p(g)
separates into a product of independent one-dimensional densities p(op.f). The
conditional expectation of the variance at each point in model space reduces to
E[ap'_,rlup,]; i.e., the rule for selecting a variance at the point (p,7) is to depend

only upon the current value u, . at that point. Selecting such a rule fixes the func-

T

tional form of the parsimony gradient gp of equation (6.14); moreover, it establishes

the form of the prior density p(u) in the MAP estimator.

As an example, consider the simplest choice for 'Ep'., corresponding to equation

(5.17):

Rule 1: '&‘p“"’,(u) = E[o,% u] = |u,,|7* (5.18)
To what does this rule fix the corresponding gradient and prior density p(x) to be?
For the remainder of this section, the subscripts (p,T) are dropped so that & and «
refer to a common element of the model domain. An element of the parsimony gra-

dient gp(w), from equation (5.14), is simply

1
gp(u) = ’lT (5.19)

Later, when we attempt to solve the nonlinear equations (56.15), we will employ by a
gradient descent method. Such a method requires that the gradient be continuous
and that it vanish at some point. By itself, equation (5.19) is inadequate for use as
the parsimony component to the full gradient g, because it becomes infinitely

discontinuous at the origin u = 0. We shall impose the following requirement on the
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parsimony gradient: gp(w) must go the zero continuously as u goes to zero. The
easiest way to impose this requirement is to choose a limiting variance af below
which the variance 3%(u) is not allowed to go. In other words, we assume that
there is a background population of points described by a Gaussian distribution with
zero mean and variance of. In a similar way, it is reasonable to assume that very
large values of u belong to a zero-mean, Gaussian population with the upper limiting

variance g2. With these assumptions, rule 1 (equation 5.18) is modified to become

2

Og g, > |u]
Rule 2: ) = { |u|? 0o < U] < 0w (5.20)
ol 0o < |u|

~

The standard deviation ¥ of (56.20) is plotted as a function of w in figure 5.1(a).

The gradient, shown in figure 5.1(b), is consequently

w/ 0§ o, > |ul
gp(u) = 1/u 0, < |u| < 0. (5.21)
u/ o? 0o < |u|

Recall that the gradient was defined to be the derivative of the logarithm of

the a priori density p(u) (equation 5.4):

plu) = e 5

w

gp(u) = fgp(u’)du' (5.22)

where gp is one term of the parsimony functional Sp of equation (5.4) at the point

(p,7). gp(w) can now be integrated to give

C, +u?/ 20k o, > |u]
Spw) ={ Cc,+1/2+In(Jul/a,) o, < |ul <0. (5.28)
C, +In(o,/0,) + u?/ 202 0w < |u]
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Consequently

(
—ul 2
Cze u~/20; O‘o>IUI
g
plu) = | C, |'l:| g 172 0, < |u] <0, (5.24)
g —u? 2
CE 0 u~/20 0w < |ul
.

where C, and C;, equal to exp (—C,), are chosen to normalize the probability den-
sity p(w) in (6.24). Functions §P and p(u) are illustrated in figures 5.1(c) and
6.1(d), respectively. The prior density p(w) is easy to describe: it is Gaussian in
form for low and high values of 1, and, in the middle ranges, has a taper proportional
to the inverse of w.

The lower limiting variance aoz is needed to enforce the continuity of the

derivative gp at the origin w = 0. Similarly, the upper limiting variance ¢2 forces
the gradient to be linear at large values of u, which imposes Gaussian behavior
upon the population of very large elements. Otherwise the gradient (in the form of
equation 5.19) would converge to zero as # — «. This tendency toward zero would
impose poor convergence characteristics upon any gradient descent method

attempting to solve the system (5.15).

A parsimonious distribution is defined as one whose kurtosis is higher than
that of a normal (Gaussian) distribution. Kurtosis, usually defined to be the ratio of
the fourth moment to the second moment of the distribution, is a measure of the tail
weight of a non-Gaussian distribution (Gray, 1979). The distribution p () of figure
6.1(d) has the weighting of its tails enhanced by the inverse taper between ¢, and

0., @and so, in the sense that has been defined, is parsimonious.

An alternative method for deriving a choice for E[e %] u], is to specify a one-
dimensional density p(w, ,) with the desired quality of large tails on the density.
Such a density can be chosen out of the family of generalized Gaussians defined

by Gray (1979):
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FIG. 5.1. The parsimony gradient gp(w) and prior density p(w) for the continuous-
variance case.

(a) Expected value of the standard deviation given wu, from equation (5.20). Vari-

ances are clipped by the minimum and maximum values of g, and o,. Here, ¢, = 0.5
and g, = 2.0.

(b) One-dimensional gradient of the parsimony functional, equation (5.21). The gra-
dient is linear outside the range (g,, 0.}, and decays as w~! within this range.

(c) The parsimony functional, the integral of the gradient in (b), from equation
(6.23). The slope of this potential "well" is steepest at u = g,. If there were no
upper limit 0., the gradient of this surface would vanish as &« - = and there would
be no incentive for a descent routine to force large values of u to be smaller.

(d) The resulting one-dimensional prior density, the exponent of the parsimony func-
tional (equation 6.24). The two dashed curved are the limiting Gaussian envelopes

whose standard deviations are ¢, and o.. The curve between the envelopes is an
inverse-u decay.
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plu) = exp —%‘E— (5.258)

—_
28T (a™Y)
['(x) is the gamma function. When « = 2, p(w) is Gaussian. As o > 0, the kurtosis
of p(u) increases as the distribution becomes more and more '"parsimonious', or
spiky in appearance. Thus, any member of the generalized Gaussian family whose
shape parameter o lies between 0 and 2 can be used as a parsimonious prior den-
sity p(u). For example, if a = 1, the corresponding functional §_p(u) is linear in u,
and the gradient is constant. The presence of these characteristics implies that the
standard deviation can be estimated as the square root of |u|. The limiting vari-
ances af and o2 are again needed in this case to enforce continuity of the gra-

dient.

An additional incentive to placing limits on the range of possible variances is to
keep the resulting set of equations (5.15) well-conditioned. When the terms 3;;,27
are considered to be elements of the diagonal matrix o2 in equation (6.15), limiting

the range of the elements to between 00‘2 and ¢2*? places an upper limit on the con-

dition number of o72: namely, 02/ 2.

Rule 2 in equation (5.20) assumed the existence of a continuous (infinite) set
of populations characterized by a variance ¥ between cf and ¢2. Let us now go
back to our original assumption of a discrete, finite set of populations 20,’?3,

k = 0, n—1, and observe the form the prior density p(u) takes:

Rule 3: P(u) = of, uwed, k=0n-1 (5.26)

where

b, = [u for which o, _; < |u| < g, }

HH
)
H

[u for which |u] < g, ]

e

k-]

L
i

[u for which g,, 5 < |u] } (5.27)
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FIG. 6.2. Parsimony gradient and prior density for the discrete-variance case.

(a) Expected value of the standard deviation conditional upon w, equation (5.26).
The limiting variances ¢, = 0.6 and 0., = g, = 2.0 have been chosen, as in figure

5.1. The set of {g, ] in this example are evenly spaced from g, to g,.

{(b) One-dimensional gradient of the parsimony functional, equation (5.28). The gra-
dient is linear with a zero-intercept within each segment o, _, <u < g, but is

discontinuous at the edges of each segment.

(c) Parsimony functional, equation (5.29). Though having a discontinuous derivative,
it has the same overall shape as the corresponding parsimony functional of figure

5.1(c).

(d) The one-dimensional prior density, the exponential of {(¢c) (equation 5.30). The
dashed curves are identical to the limiting Gaussian envelopes shown in figure

5.1(d).
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¥(w) is the step function in « illustrated in figure 5.2(a). The corresponding gra-

dient is

gpu) = ;*%- wed, k=0 n-1 (5.28)
k

which is illustrated in figure 5.2(b). There is a discontinuity in the gradient at each
point o, on the u axis, but as the subdivisions ¢, become finer, the gradient
approaches the continuous gradient of figure 5.1(b). The parsimony functional
gp(u), and the prior density p(u), are illustrated in figures 6.2(c) and (d). They are

given by the expressions

[ ]

Splu) = G + - % wesd, k=0,n-1 (5.29)
2 gf
1 u?
plu) = exp |-G — > 7 ued, k£=0,n-1 (5.30)
Ok

The normalizing terms C; may be found by the recursive relation

2

1 Ok

2

Co = Ciq + —1 k=1,n-1 (5.31)

2
Ok—1

while (, is uniquely determined by the constraint

fp(u)du =1

Although the two gradients of figures 6.1 and 5.2 appear to be grossly different,
there is relatively little difference between the shapes of the resulting prior densi-
ties. The smoothness of p(u) in the discrete case justifies the use of a more con-

venient gradient: the continuous gradient of figure 5.1(b).

To summarize this section: instead of deriving the nonlinear system of equa-
tions (5.15) from a least-squares functional, they can be derived directly from the
MAP estimator. As a consequence of this derivation, prior information about the
solution can be introduced by definition of a rule for estimating variances as a func-

tion of u.
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No explicit covariance is imposed on the solution u; rather, correlation between
points in the model domain is possible because the variances ag, themselves can
be defined to be random variables. The clustering property is imposed by allowing

positive correlations to exist between neighboring variances Ug, in model space.

In this section, various one-dimensional prior densities p(uz) have been con-
sidered as candidates for inclusion into the MAP estimator pld|wp(u). The
feature they share in common is that the "variances” in the diagonal matrix o~* are
monotonic increasing functions of Ju ]. For example, if F(w) is a constant function,
the prior density is Gaussian; if ¥(w) is given by equation (5.20), the prior density

is given by equation (5.24). For the general one-dimensional case, the dependence

of p(u) on ¥(u) can be written as

pluy,) = Cexp —f—-ﬁﬁ—dupﬁ (5.32)

*(up ;)
As long as %(u) is a monotonic increasing function of |u |, the proportion of area in
the tails to area in the central peak of the probability density in (5.32) will be

higher than it is in the Gaussian case. In such a case, the distribution is parsimoni-

ous in the sense defined in this section.

Finally, we impose the following requirements on the parsimony gradient
g =uw/ g”: it must be continuous, vanish at © = 0, and become linear at high values
of Ju]. These requirements cannot be met with the use of any single member of
the generalized Gaussian family of equation (5.25) (except the case o =2), but
they can be met by defining limiting variances 002 and o2, between which the mono-

tonic function 3(«) must be constrained to lie.

5.4 The multidimensional parsimony functional Sp(u)

The previous section described various choices for the one-dimensional parsi-
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mony functional §P(up,). When correlations are allowed between points in model
space, the total parsimony functional Sp(u) is no longer the sum of independent
terms §P(up_.,). Let us now briefly examine what form Sp(u) takes when Rule 2
(equation 5.20) of section 6.3 is in effect, but with the clustering criterion (equa-

tion 5.16) activated.

For convenience let points in the model domain now be indexed by a single
subscript i. The clustering criterion of equation (5.16) claims that the standard
deviation o; may be estimated by

1/2

o; = Zw.ucukz (5.33)
k

where the values w,; comprise a local smoothing filter. All coefficients wy, are
positive, symmetric and sum to unity. If Sp(u) is assumed to depend explicitly on
the averaged variances (o,, - ' ' ,0,), then Sp can be differentiated, using the

chain rule, to yield the gradient:

0Sp 0o
. = —F 4 (5.34)
gi Z 60'_7 au,;
But, from (5.33),
1/2
ol W Uyq
> i . 6_6_ Zwﬂcukz - Witk (5.35)
Uy Uy A 0j
so that
aSP w:ﬁ
gi = u-z———— (5.36)
¢ v 6O'J' O'j

The desired form for g,;(u,), given by equation (5.14), is

£

g; = (6.37)

4
R

and we can make the following definitions for the variance and functional deriva-

tive:

- 92 -



05p 1

1 Z 1
of - of do; a;

The definitions in equations (5.37) and (5.38) are therefore consistent with the
gradient in (5.36). However, equation (5.38) is not entirely consistent with Rule 2
because the above assumptions yield the following functional dependence of Eiz on
u:

~1]-1

'&’iz = Z’LUJ.,. Zwﬂcuf (56.39)
7 k

That is, B’f is the average of the inverse of the average of u?. If the weights Wyj

are smooth enough, equation (5.39) is approximated by use of the direct estimation
2 — o 2
oy (U) = Z'LUU’U,J (5.40)
j

Integrating the right-hand term of equation (5.38) we obtain the following expres-

sion for Sp(u):

Sp(u) = Zlnaj = ;—Z In Zwﬂcuf (5.41)
i i k

The threshold variances of and ¢Z can be easily introduced if ¢ is constrained to
lie between them. Using equation (5.39) in favor of (5.40) for the estimation of &%,
the gradient becomes:

{

1
—_— g; <0
ol 7 °
ENY
gi = yy E Wy 1 _S°p 0, < 0j <0, (6.42)
- g; 0Oo;
1 0; >0
| =2 e
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Consequently Sp takes on the form

2
sza Ziz UJ' < O,
Sp(ay, 7 ,0,) = Z Ing; Oy £ 0j <0, (5.43)
i Cuo 0F
'2_‘ E O'J' > 0w
\

in which g are given by equation (5.33). The constants C, =Ing? and C,, = Ing¥
are required to make Sp continuous at the threshold points o, and o,. This multidi-
mensional version of S, (u) is the simplest generalization of the one-dimensional par-

simony functional §P(u) given in equation (5.23).

5.5 Scale invariance and entropy

If u is uniformly scaled by the factor a, the parsimony functional of equation

(5.23) becomes:

C, + u?/ 2a?0? ac, > |u|
Spw) = C,+1/2 +In(Ju|/ag,) oo, < |u| €00, (5.44)
C, +In(a,./0,) + u?/2a%c2 ac, < |u|

where u now refers to the new, rescaled value. Because of the presence of the
logarithm, the gradient in the middle range of « remains unchanged (equal to
|u | 71); scaling affects the gradient only in redefining the threshold standard devi-
ations ¢, and o, to oo, and oo, In this respect the parsimony functional is
scale-invariant. If the limiting values a o, .. still bracket the range of "interesting"
amplitudes of u, rescaling © does not affect the functional. In a like manner the
full-dimensional parsimony functional Sp(u), defined by equation (5.41), is scale-
invariant. Among the possible functionals considered in the last section, even the
ones derived from the generalized Gaussian family, only the functionals defined in
Rules 1 and 2 possess the property of scale invariance. Except for the shift of the

threshold values ¢,, 0., the parsimony gradient is unaffected by an overall scaling
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factor applied to the model.

The multidimensional functional Sp(u) derived in section 5.4 reduces to a sim-
ple form: the extensive quantity Zjln aj. The variable g; is an estimate of the stan-
dard deviation of the local population about the point u;. Treating model space as N
sample points of an ensemble, we may view the sum as an estimate of the expected

value of the logarithm of ¢#:

N
Sp = %—Z Ino? fz"—E[mUZJ (5.45)
j=1

There is a close relationship between this expression for Sp(u) and the formal
definition of entropy. In fact, expression (5.45) is precisely the entropy of a sta-
tistically independent, Gaussianly distributed set of N random variables defined by
Burg (1975, section |lI-A). This is Burg's so-called spectral entropy. We might
wonder whether there is a connection between spectral entropy and the more for-

mal definition of statistical entropy, which is {(Shore and Johnson, 1980)

Sg = —fp(u)lnp(u)du (5.46)

The answer is yes: expressions (5.45) and (5.46) are equivalent, up to constant
terms, if p(u) is jointly Gaussian and independent. The proof of this fact is given in
appendix 5.A. The important point to make here is that the variances describing
p(u) are themselves variable. Minimizing the parsimony functional Sp(u) is there-
fore equivalent to minimizing the entropy Sy of the underlying probability density in

model space.

Our problem has a direct physical analogy to that of a vibrating lattice of
atoms, the so-called Einstein model (Careri, 1984). Each atom occupies a potential
well, with the potential energy of each atom being a quadratic function of its dis-
placement from the center of the well. At high enough temperatures, the motions of

the atoms at each site are independent, so that no direct correlation can be made
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between lattice sites. The statistical state of the lattice in this case is completely
described by the mean displacements of all atoms from their rest positions, that is,
their variances. Let us assume the crystal to be adiabatically isolated from its sur-
roundings, so that its total thermal energy is conserved. By examining the expres-
sion for entropy given in equation (5.45), we see that the crystal has highest
entropy when the distribution of vibrational energy throughout the crystal is most
uniform, or when o; is nearly constant throughout. The entropy of the crystal can
grow hegative without bounds as the vibrational energy characterized by aj(uj)

becomes concentrated at a few points in the crystal.

In using stochastic inversion, our goal has been to concentrate the solution in
model space to as small an area as possible: stochastic inversion, as we have
defined it, is a process that drives the solution to minimum enfropy.

Of course, by specifying a low-end cutoff variance 0'02, we are adding the con-

straint that entropy cannot go to negative infinity. In terms of our analogy of the
crystal lattice, atoms in all parts of the lattice must retain a residual amount of
vibrational energy.

Burg (1975) proposed maximizing the entropy measure of equation (5.45) in

2
J

order to make the variances ¢ as uniform as possible, within the constraints
imposed by the time series data (in the form of expected values). In the present
case, the only physical justification for minimizing the entropy functional of equa-
tion (56.45) is that we expect the solution to be sparse and clumped. The mazx-
imum entropy method developed by Burg (1975) and Jaynes (1957) attempts to
draw the least inference from available data. Minimum entropy methods, such as

the present method, attempt to draw the greatest inference from the information at

hand.

Before leaving this section, let us digress once more into the subject of max-

imum entropy. This principle, first formulated by Jaynes in 1956, can be compared to
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FIG. 6.3. Maximum entropy versus orthodox statistics.

(a) Maximum entropy: one out of a class of possible hypothesis h; gave rise to the
observed data. Each hypothesis is a random process characterized by unknown
parameters. Prior information for the class of hypotheses may be available in the
form of probabilities. Pick the h; that has the greatest entropy (or, is most noncom-
mittal).

(b) Orthodox statistics: the underlying hypothesis is given, and a set of data is
available. Determine the parameters of the hypothesis, using various statistical
measures on the data.

(c) A combination of the two methods: A; is not completely known, and an additional
noise process, which is assumed to be known, causes variations in the data.

orthodox statistics in the following way (Jaynes, 1981).

The principle is to specify a probability p(h;) over the class of all hypotheses
h; that could have given the data set that was actually observed. See figure
5.3(a). The data are assumed to be perfectly reliable and without noise. In com-
parison, orthodox statistics considers the observed data set to be embedded in an

imaginary class of data sets generated by an underlying hypothesis (figure 5.3(b)).

What are the underlying hypotheses for our case? They can be identified with
the family of prior densities p(u|g) that are Gaussian and independent, but have
unknown variances gf. The class of all possible hypotheses {h;} is characterized by
the N -dimensional space of variances af, i = 1, N. Each variance may range from

aaz to ¢gZ2. Besides the assumption that the densities are Gaussian, other prior infor-

mation is provided by p(o), or equivalently (as seen in section 5.2) by the rule
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We can also assume that the true data set is embedded in a class of data sets
{d, | formed by perturbing the underlying data with some additive zero-mean Gaus-
sian noise. Graphically presented, the estimation problem described in this chapter
is a combination of the first two cases shown in figure 5.3. The starting point com-
mon to all three principles illustrated in figure 5.3 is the MAP estimator derived from

Bayes' rule.

5.6 Gradient descent algorithms

As shown in section 5.2, the nonlinear system of equations to solve for the

stochastic inverse is

1 1
g = Fut+ —
vl o?

L7(Lu —d) = O (5.15)

in which 3%(u) is a monotonic function of the averaged u. The noise variance o7, on
the other hand, is assumed to be constant, and we can multiply through equation
(5.15) by aﬁ. The minimum and maximum values in the diagonal matrix (call it
D = 0%/ af) are given by 02/ 02 and ¢%/ o2, respectively. The upper limit on the
condition number of D is therefore 0%/ g2. Projection Py, which limits the range in
offset (the input space of LT), has in this chapter been incorporated into L. Now
the threshold variances ¢2 and ¢2 influence the solution in two fundamentally dif-
ferent ways. If L7L is invertible, ¢ has a minimal effect on the solution, but if L7L
has a null space that lies principally in a region where ¢? equals g2, the presence of
the o2 terms (small diagonal elements) makes the system ill-conditioned. The terms
o = 002 have another effect: they drive the corresponding terms of the solution to

2 .

zero. The smaller ¢ is, the greater this effect (i.e., the greater the weighting on

the diagonal of system 5.15).
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Because an expression for the gradient is already known, the most straightfor-
ward approach to solving equation (5.18) is to apply a steepest descent algorithm.

However, the classical formula for the step size o,

T
g'g
o = (5.47)
g’ (D + LTL)g

is not strictly valid because the system is nonlinear. Such an explicit formula for
the step size must be replaced by a line search which minimizes the objective func-
tional along the direction of the current gradient. For a continuous gradient surface,
the line search is equivalent to finding a new gradient normal to the starting gra-
dient along the line parametrized by, say, «. For our nonlinear system, the stopping

point for the line search is the point where

0 = glg = gJ/(D+L"Wu -g/LTd (5.48)
where g, is the initial gradient, u, is the initial point, and u is the desired stopping

point along the line u = u, — ag,. Now D is a function of u, and consequently of «:

0

g/g = gJ/(O[u] ~D[u,Nu, + gfg, — ag/ (D[u] + L7L)g, (5.49)

One way to solve for o is by the recursion formula

gnga + goT(D[u] - D[uo]) U,
g/L"Lg, + g/D[ulg,

(56.60)

The extra work (over the classical formula) at each iteration involves calculating

the terms D and forming the inner products g/Du, .

The actual algorithm implemented for the examples that follow is a projected
gradient descent algorithm. The descent direction used is a projection of the gra-
dient onto some subspace of model space. By constraining the descent direction
with this projection we can focus on what we know to be the region in model space

where most of the solution is going to concentrate.

There are some theoretical reasons why the projected gradient method may

perform better than a standard steepest descent method in solving the nonlinear
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system (5.15). Let us first outline the algorithm and derive the expected conver-
gence properties of the projected gradient algorithm; we can then compare these

with the well-known convergence properties of steepest descent.

The projected gradient algorithm used in the stochastic inversion examples of
the following sections is described in table 5.1. The basic idea of the algorithm is
to first concentrate on convergence in the region of the velocity panel in which
most of the solution is expected to lie. This region, at the start, is the region of
highest variances, which must be determined in a bootstrap manner since it is not
known a priori. The gradient is in turn projected onto a family of subspaces in the
model domain with gradually decreasing variances; each of these subspaces (hope-
fully) defines a population of points with a Gaussian distribution uniquely character-
ized by its variance. Within these subspaces, the gradient is linear and we can use
the classical formula for the step size in equation (5.47), therefore bypassing the
problem of having to use the nonlinear line search in equation (5.50). Search direc-
tions are set up by defining a family of projections P, that are defined by the
current estimate of the variance ¢°. The projections are ordered from high- to
low-variance regimes, and line searches are taken in directions Q,g over increas-
ingly larger sections of the velocity panel. For the details of the algorithm, see

table 5.1.

Let us now examine a few convergence properties of the algorithm of table
6.1. The convergence rate of steepest descent is given by the classical formula
[Luenberger, sec. 7.6]

2

1-a/A E(Uk) (5.51)

Blug,,) = 1+a/A4

in which F'(u;) is the error between the estimated solution u, and the true solution

u given by

E(u) = —;—(u,c -uw)T(p + LTL)(u, — w) (5.52)
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Scalars a and 4 are the smallest and largest eigenvalues, respectively, of the posi-
tive definite linear system D + LTL. The error bound for a projected gradient algo-

rithm is comparatively larger (Luenberger, 1973, sec. 7.11):

F(u) (5.563)

E(ug,y) < [1 _ﬂkz—

where the additional term g, is the ratio of the gradient energy in the projection,

g/ P, g;, to the total gradient energy, g/ g;-

If all members of the projection family {P,} (k¢ = 1, n) are disjoint and sum to
the identity, then Zﬁk = 1. When the projection family {P,} is used, the projected
gradient algorithm approaches the performance of one steepest descent iteration
only after all n projected directions have been searched. To see this, compare the
nth cascaded error in equation (5.63) with the steepest descent error in equation

(6.51):

n

[T[r-a2

k=1

1_2

0 (5.54)

1+a/A

2
1—-a/A]

Equality in this expression is approached as 8,2/ A » 0. Each step in a projected
gradient algorithm may cost as much as one full step of the steepest descent algo-
rithm, which is bad news. To justify using the projected gradient method over
steepest descent, we must get a better bound than (5.53) on the local conver-

gence rate of the projected gradient algorithm.

Let us trace the steps of the proof of the error bound in equation (5.53). Con-
sider the linearized problem Au = d where A = D + L”L for some fixed choice of the
diagonal variance matrix D. The relative decrease in error £, from the kth to the

k +1st iteration is defined to be

E(uk) e E(Uk+1)

by = £ (uy)

(5.65)

Let x, = u, —u be the error vector. The kth gradient is then g, = Ax,. The
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Projected gradient descent algorithm

Begin

(1) Unconstrained gradient step.
g := LTLu —L7d

o = 9’g
T 7T
g'L'Lg
U := u-—-—aug
Loop

(2) Estimate variances by applying an averaging time window to u.

2 - 1 2
Up.‘l' * 2T +1 j:Z—Tup'T+j

on/ 0f

1=
k-]
3

[}

(3) Partition u into . +1 constant-variance regions from 0 to = by defining projec-
tions P,. The variances that divide the regions are spaced in equal log increments.

go := Ing,

qn = Ing,

Ag := (g —go )/
fork = 1ton-1

Qr = g0 + kAgq

next &
g-1 := 0
qn = 0o

fork =0Oton

1 9k -1 = 'nop.r < Qe
(P")P-T = 1lo otherwise

next k

(Continued on next page)

TABLE 5.1. Projected gradient algorithm to solve the nonlinear system of equations
(6.15) with o specified by (56.17). Initially ¢,,, 0., 0, must be selected, but may be
allowed to relax to fit the data. For example o, may be set to the 99th quantile of
u, and ¢, set to a certain fixed log range below ¢.. Lower case bold characters are
vectors indexed by p,7 (data d is indexed by h,t) and upper case bold characters
are diagonal matrices (D, P, Q) or operators (LT, L). The unconstrained step at the
beginning is heeded to get an initial estimate of o.
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(4) Projected gradient steps.
Up+y 1= U

for k = n to O decremented

n
Qk 1= ZPJ
—
g := Q. (L'L + D)u,,, - Q. L7d
o= a’g
g”(L"L + D)g
U = Uy — g
next k
u:=u,

Stopping criterion goes here.

Go to Loop.

TABLE 5.1 (continued). Projected gradient descent algorithm.

search will be made in a direction defined by the projection of the gradient,
hi = P.9:, and the corresponding step size is o = hfh,/h7Ah,. Under these

definitions £, becomes

£ = xIAx, —(x, — ah,)TA(x, — ah;) _ 2chfAx, — o*h[Ah, (5.56)
i X7 A x, gl/Alg,
Substituting for « gives
hlh hlh
E, —r —t (6.57)
hg Ah, g: A" g,

Now g/Alg, < a~'glg, where a is the smallest eigenvalue of A. Together with

the definition 8, = (h{h,)/ (gl g,), the following bound for the right-hand factor in

il

(5.57) can be given:

hlh,

E, = S
T hlAh,

B (5.58)

A bound better than 1/ A4 can be given for the left-hand factor of equation (56.57)

by noting that hkTA h, = hkTPkAPk h,, so that
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E, = -[;—— 8,a (5.59)
k

where B, is the largest eigenvalue of the truncated operator P AP,. The conver-
gence inequality is found by substituting the definition of £, (equation 5.55) into

equation (5.59). This gives us our better error bound:

E(uk+l) = E(uk) (5.60)

a
1 - B B,

Much of the spread in the range of eigenvalues of A can be attributed to the
diagonal matrix D. If we normalize the velocity stack operator by dividing through
by the number of summed traces, the resulting maximum eigenvalue of LTL cannot
be much more that unity. The minimum eigenvalue of LTL is of course zero. In con-
trast, the terms making up D range from g2/ o2, which might be very small, to UE/ 002

which might be very large.

If we can assume that most of the scaling imbalance in the linear system A is
due to the range of variances in D, then, with a suitable choice for the family of pro-
jections {P.] it is possible to get faster convergence with the projected gradient
algorithm (compared to that of steepest descent). In table 5.1 the family of pro-
jections {Q, ] is defined as the sequence of partial sums of {P,] that ranges from O
to the identity | as the iterations proceed. The expected maximum eigenvalues of
Q. AQ, are

2

Bo

a,
B}c A1+ — (5.61)
Ok

2

as of 2

ranges from o2 to ¢2. At the same time, B, ranges from O to 1. If the energy
in the gradient is concentrated in the high-variance populations of u, then the
growth of 8, against B,, as the iteration loop proceeds, is something like that
shown in figure 56.4(a). The corresponding plot of 8, a/ B, versus §; is sketched in
figure 56.4(b). By comparing equations (56.51) and (5.60), we can see that wherever

the curve rises above the approximate horizontal line 8,a/ B;, = 4a/ A, the con-
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FIG. 5.4. Hypothetical behavior of the norm of Q. AQ, .

(a) B, is the ratio of projected gradient energy to total gradient energy. B, is the
norm of Q. AQ,. As the projections Q, grow from O to |, 8, ranges from O to 1 while
B, ranges from a to A, the smallest to largest eigenvalue of A. If the energy in the
gradient concentrates in the high-variance populations of u, then the growth of g,
will be greater than that of B,.

(b) As a resuit, the quantity E, = 8,a/ B,, which determines the convergence rate
(equation 5.60), may be large in the middle ranges of §,. To get superconvergence
(greater that steepest descent), £, must surpass 4a/ A. Finally as Q; approaches
the identity matrix, the performance of the projected gradient algorithm will
approach the performance of steepest descent (the dotted line) from above.

vergence rate is faster than that of steepest descent.

In summary, the projected gradient algorithm allows one to concentrate on
matching the data set's high-amplitude events before turning to the smaller ampli-
tude events. Being able to do this is especially important in the present case: the
dimensionality of the system to be solved is so large, that any iterative algorithm

will have to eventually stop far short of complete convergence.

5.7 Synthetic data inversion

Before presenting examples of the stochastic inversion algorithm on actual
data, let us first consider two synthetic cases. The first case, an ideal noise-free

data set, is showr: in figure 5.5. The data set d of figure 5.5 has been generated
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by velocity stacking (via L) the set of six "point sources’ in the velocity panel
labeled Syn. The waveform for each source is a sinc (sin(£)/ {) function in time.
The stochastic inversion algorithm was subsequently applied to d, and after ten
iterations resulted in the estimate u. The estimate u is very close to the exact
solution Syn; in fact, if u is subsequently stacked with the operator L, the residual

d — Lu (again, on figure 5.5) is nearly zero.

The inverse velocity stack u has converged to all six "reflections" in velocity
space, excepting the reflector with the shallowest zero-offset intercept time. The
shallower a reflector is, the more sensitive its moveout is to velocity variations. This
sensitivity to velocity to shallow intercept times, coupled with the possibility of not
sampling the velocity axis fine enough, may prevent the gradient from converging to

the true solution at shallow times.

A solution to the problem of unfocused reflectors at shallow times would be to
sample velocities in velocity space with a sampling interval proportional to time.
There are no constraints on the sampling scheme for L, and as long as the adjoint L
is known, the sampling scheme in velocity space might be freely chosen to adapt to

the problem at hand.

The initial data set d + n of the second synthetic case we shall consider is
shown in figure 5.6. In this case, Gaussian noise has been added to the data of fig-
ure 5.5. The signal-to-noise RMS amplitude ratio is 1:2. Five out of the six original
events have been detected by the stochastic estimate u (shown in figure 5.6),
despite the high noise level. In addition, a few spurious events at late times have
been added to the estimate. The remaining two panels of figure 6.6, Lu and d — Lu,

are, respectively, the resulting modeled data and the residual.

The stochastic inversion method in table 5.1 requires the assignments of a
high and low signal variance o2 and o2, together with a noise variance gf. For the

noise-free case of figure 5.5, the noise variance could be set to an arbitrarily low,
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FIG. 6.5. Inversion on a synthetic noise-free model. Panel Syn is the desired solu-
tion; it was used to create (via velocity stack L) the synthetic data d on the next
panel. Ten iterations of the gradient descent algorithm of table 5.1, applied to d
yields u in the center panel. Panel Lu, the velocity stack of u, approximates the ini-
tial data set; the rightmost panel is the difference d — Lu.

nonzero value. For the noisy case of figure 5.6, the noise variance was iteratively
estimated from the error measure as the algorithm proceeded. The signal variances
were also allowed to adapt to the model: ¢, was either set to the greatest value of
|u | seen in the current estimate of u, or to some high quantile of u; while o, was
set to a small fraction of o, typically 107*¢.. The remaining examples of this
chapter follow this procedure to determine the variance values of ¢2, o?, and o? at

v

each iteration.
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FIG. 5.6. Inversion on a synthetic noisy model. Bandlimited noise was added to
panel d of figure 5.5 to create the noisy data on the left panel, d + n. The signal-
to-noise ratio on d + n is 0.5. Panel u(n) is the result of 10 iterations of the gra-
dient descent algorithm of table 5.1 on the noisy data. This panel should be com-
pared to Syn of figure 5.5. Panel Lu(n) is the velocity stack of u, and panel
d - Lu(n) is the difference between the first and third panels.

5.8 Real data inversion: Amoco Grand Banks

The next example deals with the real data of figure 5.7: a common-midpoint
gather collected by Amoco in 1974 on the Grand Banks of offshore Newfoundland.
The resulting velocity stack u after seven iterations through the stochastic inver-
sion algorithm appears on the left in figure 5.8. For comparison, the forward veloc-
ity stack on the data, L7d, is shown on the right. The comparison of Lu to d is
shown in figure 5.7, and the comparison of d with the residual d — Lu is shown in

figure 5.9.

There are some obvious events on both the original gather and the residual of

figure 5.9 that seem not to satisfy the hyperbolic myveout assumption. These
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FIG. 5.7. Amoco Grand Banks: data d and Lu. The left panel is a common midpoint
gather (courtesy of Amoco) from Grands Banks, offshore Newfoundiand. The offset
interval is 560 meters, the time sample interval is 8 msec. This gather was shot in an
area of strong sea-floor multiples and with large variations in sea-floor elevation.
The right panetl is the modeled common midpoint gather created by velocity stacking
the stochastic inverse u of figure 5.8.

events, at approximately 3.6 seconds on the gather, are water-layer (or peg-leg)
multiples off the strong primary reflector at 2.6 seconds. The nonhyperbolic nature
of the arrival times of these events can be explained by modeling the traveltimes
with ray tracing. The model shown in figure 6.10 was generated with the aid of two
pieces of information: first, velocities measured from the velocity stack inverse u;
second, the sea floor topography measured from the stacked section. The interval

velocities below the sea floor were chosen to increase linearly from 1.6 to 3
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FIG. 5.8. Amoco Grand Banks: u and LTd. The left panel is the inverse velocity
stack u, the result of 7 iterations of the gradient descent algorithm using data d of
figure 5.7 as input. The right panel is the velocity stack LT applied directly to the
data d. The slowness interval on each plot is 0.03 sec/km.

km/sec, which are consistent with the stacking velocities seen on u.

The two traced rays on figure 5.10 model the two possible paths the water-
layer multiple may take at the highest offset in figure 5.9 (about 2.6 km). Because
of the variable depth of the sea floor, the two events, representing energy travel-
ing from a common source on the right to a common receiver on the left, take dif-

ferent, unsymmetric paths. Consequently the events have different traveltimes.

In figure 56.11 the two independent peg-ieg paths are modeled for all offsets

on the original gather. As the offset from source to receiver decreases to zero, the
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FIG. 6.9. Amoco Grand Banks: comparison of data with residual. On the right is the
difference between the data and modeled data panels of figure 5.7. For comparison
the gather of figure 6.7 is re-illustrated on the left.

two pegleg paths, labeled slow and fast, converge to a common zero-offset path.
From the traveltimes of all rays on figure 11 can be generated a synthetic gather: it
is shown on the right in figure 5.12. The synthetically-generated peg-leg multiples
match well all features of the corresponding multiples on the real data (the left
panel of figure 5.12). In particular, the two multiples at high offsets are separated
by a traveltime of 0.3 seconds. The peg-leg multiples might be better fit by a pair

of hyperbolas whose axes are translated out to offsets of approximately +1 km.

The solution u in figure 5.8 was essentially found by fitting a family of hyper-

bolae, with a common axis at zero offset, to the data. Moreover, the solution is able
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FiG. 5.10. Amoco Grand Banks: ray tracing model. This panel models the sea floor
topography and the topography of the strong reflector at 2.6 seconds (determined
from the stacked section) in the vicinity of the common midpoint gather of figure
56.7. In fact, the two rays shown above model the propagation from the source (on
the left) to the farthest-offset receiver (on the right) of the gather, the ray being
allowed to bounce once off the sea floor. Water velocity is 1.48 km/sec, and the
subsurface velocity to the strong reflector is a linear function of depth from 1.60 to
3.00 km/sec.

to model to a good degree the peg-leg multiples which cannot be fit by any one
member of the hyperbolic family. Compare the left and right panels of figure 5.9:
that portion of the peg-leg multiple which is least successfully fit is obviously the

part with a reverse slope.

Returning to the velocity stack of figure 5.8, we can see the consequences of
the attempt to fit the nonhyperbolic peg-leg events at approximately 3.6 seconds.
At this point on the velocity stack, apparent events range from a slowness of 0.7
sec/km (below water velocity) to 0.2 sec/km: i.e., the energy is not localized on

the stack. By comparison, the strcng event at 2.6 seconds on the velocity stack,
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FiG. 5.11. Amoco Grand Banks: the two possible peg-leg paths. Ray tracings of the
two possible peg-leg raypaths from the strong reflector '2' that bounce once off
the sea floor reflector '1'. All rays shown have a common midpoint. The family of
raypaths in the upper panel have slower traveltimes than the family of raypaths in
the lower panel because of the greater water depth that the slower peg-leg travels
through. The model of figure 5.10 was used to generate the rays.

responsible for the formation of the pegleg multiples, has focused well at 0.5
sec/km.

We might summarize the behavior of the stochastic inverse in this example
with the following three points: hyperbolic events focus in velocity space; nonhy-
perbolic events with positive moveout (or, positive dip) are modeled, but by
"unfocused” events extending over a range of slownesses in velocity space;

finally, events with reverse moveout have a tendency to be left on the residual.
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FIG. 5.12. Amoco Grand Banks: synthetic gather. The modeled common midpoint
gather on the right panel is a summary of the traveltimes of various rays traced
from figure 5.10. For comparison the real common midpoint gather of figure 5.7,
which the synthetic is meant to fit, is shown on the left.

The standard procedure of stacking is equivalent to sampling the velocity
stack L7d of figure 5.8 along a preselected time-velocity curve, which defines the
stacking velocities. Given the opportunity to increase the resolution of events on
the velocity stack u, we can expect to attain a better separation between pri-
maries and muitiples on the stack; thus an alternative to stacking is to sample the
velocity-stack panel u of figure 5.8 along the time-velocity curve. Figure 5.13 is
an example of such a process: the dark borders outline a window in the velocity

panel from which the desired events are pulled to make the stack. Outside of this
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Selection of Siowness Values for Stacking
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FIG. 5.13. Amoco Grand Banks: velocity stacking function. This panel is a re-
ilustration of the inverse velocity stack u of figure 5.8. The portions of traces
inside the boxed outline were summed (over slowness) to produce the stacked sec-
tion of figure 5.14. In that figure, each trace is the resuit of inverse velocity stack-
ing a common midpoint gather to obtain u, followed by summing over the subregion
defined by the box outlines above.

window, for example, lies most of the energy from the first sea-floor multiple at 2.0

seconds.

To create the stack in figure 5.14, 90 adjacent common-midpoint gathers from
the Grand Banks area were processed with the stochastic inversion algorithm of
Table 5.1, then windowed and stacked with the implied velocity function of figure
5.13. For comparison, a standard stack made over the same gathers with the same

time-velocity curve is shown in figure 5.15. The differences between the two
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Stack of Vetocity Panels U
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FIG. 6.14. Amoco Grand Banks: a stack of the velocity panels u for 90 adjacent
gathers using the velocity function defined in figure 5.13.
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stacks are, unfortunately, small. The stack of figure 5.14 has slightly improved the
strength of primary events with respect to the sea floor multiples in the region of
1.5 to 2.0 seconds, and has better resolved the deep events from 4.0 to 4.5
seconds. An obvious improvement to the stochastic inversion process would be to
sample velocities more finely at shallow times than at deep times, in order to
increase the discrimination between primaries and multiples whose stacking veloci-
ties at shallow times are very nearly the same. We are free to select an arbitrary
sampling geometry in velocity space; the only constraint is that the transformation L

from velocity space to data space must be linear.

5.9 Real data inversion: Western peg-legs

Not only common-midpoint gathers, but common-shot gathers may be
transformed into velocity space, provided the events on each gather are approxi-
mately hyperbolic. Figure 5.16 illustrates a common-shot gather, courtesy of
Western Geophysical Company. It consists of many orders of peg-leg multiples, ori-
ginating from primaries no deeper than 2.5 seconds on the gather, and formed by
reverberations within a shallow water layer of about 100 meters depth. The rever-
berations become clear when we look at the velocity stack inverse u in figure 5.17.
On the left panel is a contoured envelope of u, on the right panel u itself. Four dom-
inant primaries are visible in the left panel, and are connected by a line representing
the time-velocity curve of the primaries. By assuming a water depth of 100 meters,
the apparent time-velocity curve each peg-leg multiple must exhibit on the velocity
stack can be calculated: these are the curves A, B, C in figure 5.17; each curve
emanates from its own strong primary. A water layer peg-leg multiple characteristi-
cally decreases in apparent velocity with time, as the time spent by the ray path in
the water layer increases relative to the time spent in the sediments. Curves B and

C match well the actual peg-leg events seen on u.



In order to demonstrate velocity filtering, let us divide the velocity plane of
figure 5.17 up into the light- and dark-colored areas shown. The velocity stack
operation L can then be applied to the portion of the velocity plane corresponding
to the dark colored area; the resulting high-velocity modeled events are shown in
figure 6.18. Figure 5.18 is the result of subtracting the high-velocity events of fig-
ure 5.18 from the original data; as a result it represents the data with one train of
pegleg multiples (and its generating primary) filtered out. The most visible change in
the filtered data is the removal of the destructive-interference "dead zone' seen in

figure 5.16 at the 1.9 km offset, from 3 to 4 seconds.

Originally, the data of figure 5.16 were sampled at two different offset inter-
vals: the near offset traces out to 1.8 kilometers were sampled 25 meters apart,
while the far offset traces from 1.8 to 3.2 kilometers had a 50 meter sampling
interval. When solving for the stochastic inverse u of this data set, we prevented
the uneven sampling from biasing the solution u by effectively setting the noise
variance of the missing traces to infinity. Once u was found, the missing traces
were estimated by applying a velocity stack L with an even sampling interval of 25
meters: thus every other trace on figure 5.16 from 1.8 km to the end of the cable

has been interpolated.

8§.10 Real data inversion: Western surface waves

Besides discriminating hyperbolic events by their associated moveout, the sto-
chastic inverse is also able to discriminate between hyperbolic and non-hyperbolic
events. This is especially true of surface waves, whose characteristics on the shot
record are high dip (i.e., slow velocities) and dispersion. A data set (courtesy of
Western Geophysical Co.) with such a surface wave component is shown in figure
6.20. It is a shot profile recorded somewhere in Saudi Arabia. As in all previous

examples, it is convenient to compare the stochastic inverse u with a "standard"”
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Interpolated Shot Cather (30)
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FIG. 6.16. Western peg-legs: interpolated shot gather. The original group interval
on this shot profile (courtesy of Western Geophysical) was 25 meters for the near
offsets out to 1.8 km, and 50 meters from then on. Far-offset traces were interpo-
lated, to make a uniform group interval of 25 meters, by use of the velocity stack
inverse u of figure 5.17. The time sampling interval is 8 msec.
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Separation of High-Vetocity Peg Leg Paths
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FIG. 6.17. Western peg-legs: the separation of peg-leg paths by velocity. The
panel on the right is the velocity stack inverse u, the result of applying the algo-
rithm of table 5.1 to the uninterpolated portion of the gather of figure 5.16. The
panel on the left shows contours of g(u), the envelope of u; the contour interval is
10% of max{e). The upper bold line connects primaries from 0.8 seconds to 2.4
seconds; the lower bold lines, labeled A, B, C, are theoretical peg-leg multiple paths,
calculated using the assumption that water depth equals 100 meters. The shaded

area has been designed to enclose only the highest-velocity peg-leg multiple path
C.

velocity stack L7d (figure 5.21). The modeled shot gather Lu and the residual
d — Lu are shown in figures 5.22 and 5.23, respectively. Virtually all of the surface

wave energy present on the shot record remains in the residual. On the other hand,
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High Velocity Events
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FIG. 6.18. Western peg-legs: the high velocity multiple paths modeled by velocity

stacking u (with L) only over the shaded area in figure 6.17.
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At1 Other Events
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FIG. 5.19. Western peg-legs: The result of subtracting the data of figure 5.18 from
the data of figure 5.16. It represents a version of the common shot profile with the
high-velocity peg-legs (path C of figure 5.17) filtered out.
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FIG. 6.20. Western surface waves:

a common-shot land profile (courtesy of

Western Geophysical) from Saudi Arabia. The sampling interval is 4 msec, and the
group interval is 50 meters. The profile has been gained with a function proportional

to time squared.
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FIG. 5.21. Western surface waves: a comparison of a standard velocity stack L7d
of the data of figure 5.20, with the inverse velocity stack u. The slowness interval
on each panel is 0.0125 sec/km.

reflectors previously masked by the surface waves have been recovered on figure

b.22.
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Modeled data Lu
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FIG. 6.22. Western surface waves: the velocity stack Lu of the panel u in figure
5.21. Compare this to the original data of figure 5.20.
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Residual d - Lu
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FIG. 6.23. Western surface waves: the difference between the modeled profile of
figure 5.22 and the original data of figure 5.20.
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56.11 Summary: conditions favorable to inverse velocity stacking

The stochastic inversion process described in this chapter is basically a dip-
decomposition scheme. It assumes that the given data set is a linear superposition
of events with hyperbolic moveout. The validity of this assumption can be easily
destroyed by applying an automatic gain correction to the data, whose function is
to make events visible by gaining the traces in a nonuniform manner. The examples
considered in the last three sections have all avoided this problem: instead of an
automatic gain, identical spherical divergence corrections were applied with a gain

proportional to £%.

Stochastic inversion is a global process; it does not model well changes in
amplitude or phase along the reflector from one offset to another. Up to a point it
can accommodate reflectivity variations with offset, for it seems to do a good job
at reproducing smooth variations, but this is done at the expense of the image's
sharpness in velocity space. A replacement for the velocity stacking operator L
which is less global in nature will certainly be more successful when there are large
deviations from the hyperbolic-moveout model, as there were for the example of

figure 5.7.

In any case, the stochastic inverse u has proven to be equal in performance to
nonlinear semblance velocity analysis in resolving event velocities. The common
assumption that both methods are based on is the presence of events whose trav-
eltimes fit a hyperbolic moveout curve. Moreover, the stochastic inverse has the
added advantage of being quasi-invertible: the transformed velocity panel Lu in

many cases fits the original gather very well.

5.A Appendix: the equivalence of Burg's spectral entropy to statistical entropy

In this section we shall show the equivalence of functional Sp (equation 5.45)

and entropy Sg (equation 5.46) under the conditions that p(u) is independent, and
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has a known Gaussian distribution with zero mean. The density p(u) is actually

conditional upon g, the variances of the Gaussians, and here we may consider Sp

and Sz to be functions of g. With these assumptions, p(u) is

where

are the normalizing terms. By direct substitution,

—fp(u)lnp(u)du

i

Sg

N wh
= ‘[\I’/Lexp ZInA —Lg du, -
i=1 UJ
N ¢ 2 N 2
1 Uy 1 w
= Zf in4; ———- I |Aiexp -— du,
j=1 \ 2 ajg i=1 2 0'7'2
N ~ ( 2 2
u. B
= Zf In 4; —1—42 Aj exp —-—-Lz du;
- 2 of i
i=1 \

duN

(6.A1)

(6.A2)

(5.A3)

Each factor in the product on the right equals unity, because the independent den-

sities are normalized by A,. Each integral within the sum over j consists of two

terms. The integral of the first term is seen by inspection to be ln(Aj); the integral

of the second term can be evaluated by parts:
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The integrated part vanishes, while the remaining integral is 1/ 24;.
X 1 N X 1
= - InA, — — —_— Z In————
Sg Z 72 2 . V2mo;
i=1 j=1
1 X N
—_ 2 AN
2Z:Ina,— + > (lIn27 + 1) (5.A5)
j=1
Apart from the constant term, Sz is therefore seen to be equivalent to Sp:
_ N
Sg(o) = Splo) + E—(anﬂ +1) (5.A6)
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