351

Relatiwe Entropy Speciral Analysis
slide notes from SEP-35 wnuviled lecture
by John Burg

Stewart A. Levin

[. What is relative entropy?
A. Problem it solves
B. Axiomatic derivation
C. Propertlies

I[I. Specialization to spectral analysis

A. Derivation of more general forms of max-
imum entropy

B. Signal processing application

Relative entropy is a general method of infer-
ence about an unknown probability density, q,
when there is an initial estimate of the probabil-
ity density, p, and new information, /, in the
form of expected values.

We make a few definitions:
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xz random variable
D domain of x

D collection of all possible probability densi-
ties, g(x), on D, 1.e., g = 0 for x €D and

[ q(z)dz = 1
D

g7 the true but unknown density
p(z) the initial estimate of g

/ new information in the form of expected
values

3 all probability densities agreeing with /.
Jcd, qley.

g (x) the final density

e the '"information operation”, used as
g = po/. This operator takes two argu-
ments.

If ap(z), k=1,...K, are functions of the ran-

dom variable z, then the true expected value of
a, (x), @, is give by

g = [ (z)gi(z)dx k=1,..,K
D
where ¢T(z) is the true density.

Information given in the form of some
expected values, @, thus allows us to place the

linear equality constraints
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fa,,c (x)dx = @ k=1...K

on the final probability density, g(x)< 9.

Problem and solution

Given the initial probability density p, how do
you choose ¢? There is only one logically con-
sistent way of doing this. g must be chosen to
minimize the relative entropy H|[q ,p ] given by

O Q(x X
lg.p] = [ q(= )lg——Lp(x) d

subject to the constraint that g agrees with the
expected values @. Our notation ¢ = po/ is
shorthand for this minimization.

This claim follows from four Consistency Axioms.
These four axioms are based on the fundamental
principle that if a problem can be solved in more
than one way, the results should be consistent.

I. Uniqueness
Result should be unique
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I1. Invariance
The choice of coordinate system should
not matter

III.  System Independence
[t should not matter whether one accounts
for  independent information about
independent systems separately in terms
of different densities or together in terms
of a joint density. In terms of the 0 opera-
tor:

(pip2) o (I Alz) = (pioly) (pgoly)

IV.  Subset Independence
It should not matter whether one accounts
for independent information about a sub-
set of D in terms of a separate conditional
density or in terms of the full probability
density.

The g €9 that minimizes the relative entropy

Hlg.p] = fqlog—]g;dx

satisfies these axioms uniquely.

In the references, relative entropy is termed
cross-eniropy, and the initial and final probabil-
ity densities are called prior and posterior
respectively.
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Some properties of o:

1)p =polifand only if p €9

2) (pol)o]l = pol

3) Triangle equality: For any r €9

Hlrpl = Hlr,q]l+ H[q.,p]

where q =pol. The special case 7 = qJr
shows ¢g is closer to qrT than p, i.e.,
H[qT,q] < H[qT,p] with equality if and only if
q =D.
4) Sequential new information
(PO[1)O(]1A]2) = po(l;Aly)
5) Remeasured information
(pol)ol' = pol’

where [' is a later measurement of the
expected value given by 7, e.g. /' wipes out /.

Application to spectral analysis

We shall derive the way to estimate the power
density spectrum of a stationary Gaussian time
series, given a prior spectral density P(f) and
exact autocorrelation information R(n), [n|<N.

A simplistic way of looking at a stationary
Gaussian time series, y (t), is

y(t) = % ( @ sin[27f,, t] + b, cos[2mf, . t])
m=1
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where a,, and b, are independent, zero mean,
normally distributed with variance ¢2,:

2

A ]

1

——— exp| —
enad 207,
Since the average power of sin or cos is % of the
peak-squared amplitude, the power at frequency
fom is 02,

Continuing with the simple-minded analysis,
we see our power spectrum at f, is propor-
tional to o2, Thus our prior power spectrum
determines the prior probability density for the
a,, and b, .

Play,) =

Now our autocorrelation sequence forms the
expected values of

2 2
am+bm

3 5 cos|27f ,, T]

This becomes

F(1) = % o cos[2mf,, T]
1

Starting with an initial Gaussian distribution
and adding the expected value information from
the autocorrelation measurements, the relative
entropy principle gives us a final probability
density, also zero mean, independent Gaussian
with variance at f,, of
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1
1 N
st 1 A AT
Om —-N

where the A,, are Lagrange multipliers adjusted
to match the given autocorrelation values and
is the unit delay operator.

Thus our final estimate is

Q) = ——
P(ry &M

This looks very much like the normal max-
imum entropy solution. (If P is white it is.)

If the prior is N** order autoregressive, then

Q) = — L
N B 2"+ Y N, 2T
-N —N

1

N
Y, (Bn +A,) 2"
—N

For an arbitrary prior, P(f), @(f) has no spe-
cial form such as AR or ARMA.

Actually, we are really assuming a x° distribu-
tion with two degrees of freedom on the initial
power spectrum P(f ). Instead of assuming only
2 degrees of freedom per frequency, suppose
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you weight the spectral estimate by assuming
W(f) degrees of freedom at f. Then the result-
ing final spectrum is

Q) = — T
A

Suppose we have prior probability densities
Ps(f) and Py(f) of the signal and noise spec-
tra. Let our new information be the autocorrela-

tion R (7) of the combined signal + noise. Rela-
tive entropy yields the final densities

QS(f) — 1 l‘N N
PS(f) +_§v)\nz
QN(f) — 1 . _
PN(f) +_Z‘JN}\nZ

with the same Lagrange multipliers A, .

Conclusion

Use of the relative entropy principle leads Lo
the only logically consistent approach to spec-
tral analysis.
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