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Two Dimensional Modeling and Inversion of the Acoustic
Wave Equation in Inhomogeneous Media

John Fowcett

Abstract

In this paper we outline a fast and efficient method for the finite difference calculation
of solutions to the two dimensional acoustic wave equation in an inhomogeneous medium. We
then implement our forward modeling scheme in an inversion procedure to determine the two

dimensional velocity variation. A numerical example is given.

Introduction

The initial-boundary value problem that is central to the work in this paper is:

1 %P

ey i VP 8(X—Xo)S(t) (1a)
P(z,z=0,t) = 0 (1b)

%‘S—(z,z =L,t)=0 (1¢)
P(z,z,t=0) =0 Py (z,z,t=0) = 0 (1d)
S(t)=0t<0  X,Xp & RX[0,L] (1e)

In terms of acoustics, (1b) represents a pressure release surface and (1c) a rigid bottom.
However, the methods which we shall describe, apply equally as well for other choices of

boundary conditions (1b) and (1c).

The inverse problem is the estimation of ¢ (x,2z) from a knowledge of %—z‘a(x,z :O,t;X})

“
where X, represents the source position. In our inversion method we shall parametrize

¢ (z,z) in terms of bicubic splines. The unknown parameters, g ,will be the values of ¢c(z,z)
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at the splines' nodes. We shall suppose that we have a set of discrete observations,
c—i’z Z—S(xi,z =0,tj;X_;3). Our method will be a straight- forward implementation of non-linear

least squares theory:

minﬁllcﬂj—-L(ﬁ)li,J‘”z (2)

where [ is the solution of (1). The non-linear least squares algorithm we shall employ is
equivalent to solving a sequence of linearized least squares problems. Hence, our method is
an iterative application of a linearized method. Tarantola [9] has previously discussed in

theory such methods.
At each iteration we must solve the problem (1) for the current estimate of ¢ (z,z), and

in fact, we sometimes solve (1) several times to calculate an approximate Jacobian BLa(—. ) :
. p
Hence, our forward modeling algorithm must be fast and accurate. We shall first discuss the

details of our finite difference modeling program, and then discuss our inversion procedure.

Finite Difference Modeling of the Acoustic Wave Equation

We consider (1) on a finite domain z:[0,X] z¢[0,L], and we discretize (1) in space
and time to obtain the following explicit scheme:
cz(zi,z_,-)

P (zy,25) — 2P (24,25)+ PPN xy,25) = 12

8 x (3)

(16(Pn(.’l'i+1, + P"(xi,zjﬂ) + P"(x,;_l,zj) + P"(a:i,zj_l))
- (P"($i+2,2j)+Pn(Zi,Zj+z) + P"(Zi—zazj) + Pn(xiazj—Z)))
— 6c*(x;,2;)r? P™(zy,2;) + S(£,)6(L,m)cP(zy,z;)r? + O(h*+(At)?)

6(i,7) =1if i=l,j=m: =0 otherwise.

We have taken the z and z discretizations both equal to h and r= %t—, where At is the time

discretization. The Courant-Friedrich-Lewy (CFL) condition for the stability of the scheme
1

(3) is that r ¢ s(g—)2 ( Alford et al [1]), where we will take c>max; jc(z;,z;). As is indi-

cated in (3) our scheme is spatially fourth order accurate. The source function S(¢) in (1a)
determines which wavelengths will dominate in the solution P(z,2z,t). A rule of thumb sug-

gested by Alford et al [1] is that for the discretization (3), five grid points per upper half
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power wavelength are needed to properly resolve the solution. Here the upper half-power

wavelength refers to the upper wavelength >\=—C— ,where the source's power spectrum

f

| S(f)|® has reached half its maximum value.

The only unusual term in (8) is the source term S(£,)6(1,m) c®(z;,2;)r?. Previous
authors have suggested more complicated procedures for the inclusion of sources, but the
straightforward inclusion of the source at a single grid point works perfectly well. Intui-
tively, if the source point )?0 is located at the grid point (I,m.) then from the discretization

of (1a), we would expect the discretized source to have the form:
TS (t)6(Lm ) (.2, (AP (4)

where N is some normalization. From the definition of a two dimensional delta function
6(2—)?0) we know that :

(6,%(X)) = ¥(X,) where (5a)
X1 ~» > -+
(6,9) = [ [6(X—-X)¥(X)dydz. (5b)
00

A consistent inner product to use with our grid is :
(r.9) = L3371 (,5) g(4,5) (6)
L)

6(l,m)
N

consistent with (5a) and (5b). With N=h?, we obtain the source term in (3). We can evalu-
ate  P(z,z,t;X;) analytically for  S(t) = t(t—t,);0<t=<t, , S(t)=0 t=¢, and

If we take 6()?~)?0) as approximated by , then N must be equal to h? for (6) to be

-g%(x,z =0,t)=0, c(z,2)=1. In Figure 1, we show the analytical solution for the first arrival,

and the numerical solution using scheme (3). Here we are looking at a trace a distance ,
|)?~)?0| =.2864 and we used a grid of 101x51 points with 400 time steps (
Az =Ay=.02,Af =.005). (There are two traces here, but they are indistinguishable.)

To implement (3) on the array processor ( Floating Point AP 120B ) we consider (thanks
to Peter Mora ) the discrete Laplacian in (3) as a sum of convolutions in the z and z direc-

tions. We define the vector l; :

Do —r? 1677

St12 12 7

167° —rz]
12 > 12

—2.57% (7)

and we can write that :
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Figure 1. Analytic and Numerical Response to Source t. =1

V2.5 = b(5) * P(i,j) + 6(3) * P(ij) (8)

This convolution, and all vector/matrix operations are done quickly in the array processor.
The field resuiting from this convolution is then multiplied by the corresponding elements of
the velocity matrix (actually, square of the velocity ) to produce P . Then P , Pm, Pl
and the source contribution for the particular time level are added together to produce P**!
. We then move the elements of P**! corresponding to the values of the pressure field at
selected traces at z =Az into a storage area in the array processor. P"~! is then overwrit-
ten by P™, P™ overwritten by P"*!, and we start again for the next time step. This whole
procedure, for all time steps, is carried out with one call to the array processor. For a small
grid (e.g., 51x26 with 200 time steps ) we have a saving of a factor of 8 to 10 times over

the VAX, using the array processor; for larger grids the savings is even more substantial. At
P(z;,z=7z,t)

the end of all the time steps, we transfer P(x;,z =Az,t) to the VAX, and use Az

to represent %g(xj,z =0,t).
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Finally, we must address the question of implementing boundary conditions. Our boun-
dary conditions in the vertical direction (1b) and (1c) have physical significance and are
easy to implement. We can consider our grid to have 2 rows appended to the top, and 2
rows appended to the bottom. We then simply extend the solution oddly and evenly, respec-
tively, about the two boundaries. However, in our finite domain, the horizontal boundaries
have no physical significance, but numerically we must impose some boundary condition.
Many authors have suggested various absorbing boundary conditions which in some way
simulate a transparent boundary. Clayton and Engquist [3] have given schemes based upon
one-way wave operator approximations. Here the accuracy (in particular the range of
incident angles over which the approximation is valid) and the complexity of the scheme

depends upon the order of the one-way operator used

in our problems, energy will be reflected off the top and bottom boundaries and there
will be in general, energy incident upon the side boundaries at a large range of incident
angles. Also, although probably possible to implement in the array processor , we desire , for
our first attempts at inversion , simple boundary conditions which can be easily internally
implemented. A "brute force " method is to make the horizontal size of the grid large enough
so that reflections from the sides would have no effect on the traces of interest in the
relevant time window. However, due to storage limitations within the array processor, we
cannot make the grid too large. Our method is to use a grid twice as large horizontally as
vertically, and we then calculate the pressure field twice , once for zero boundary conditions
on the sides and once for zero-slope conditions. We then average the two solutions( see
also Smith [8]). This effectively gives us a grid four times as wide as deep. Perhaps in the

future, we shall examine the more effective use of side boundary conditions.

Optimization Procedure

As we mentioned above, we will assume that c(x,z) is parametrizable in terms of bicu-
bic splines. This is most suited for the situation where ¢ (z,2) is smooth. The use of one-
dimensional spline approximations for one-dimensional inverse problems has previously been
studied by Banks et al [2]. The algorithm we use for two dimensional spline interpolation is
based on that of de Boor [4]. Here, we suppose we have a grid with ¢; ; the value of ¢ (x,2)

Then one dimensional cubic splines are found in the x and z directions. This

procedure determines g—c-and aiat the nodes. Fitting bicubic splines along each column
z

Bz

at z =x;,z =z2;.

2

of the grid ( or row ) determines at the node points. The 4 quantities

P
. aC—,;_J' aci_j azcu]
Y opx ' 9z ' dzxoz)

at 4 corners uniquely determines the bicubic spline
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3 3 -
plz,z)= 3 3 I'pa*(z—z)"(z—2z;)" within the rectangle bounded by the corners. With

m=0 n=0
the one-dimensional splines, there is always the problem of what to do at the boundaries.
We used de Boor's [6] " not - a- knot " condition. This is a condition that replaces the need
for derivative information at the endpoints with a condition that requires the two cubics on
the last 2 intervals to have continuous third derivative at their common node (i.e., they are

the same cubic).

The parameters, g , to determine are the values of c (z,z) at the nodes. Once we have
found c(x,z) at the nodes, then from bicubic spline interpolation,, ¢ (x,z) is known every-

where, within this approximation. Our problem is :
ming || d—L(3)|| . (9)

We will employ the Gauss-Newton method for non-linear least squares. If we denote
d-L(P) as F and &()= ;—}37’}?’ then (9) is equivalent to finding B, such that V& = 0 where

Do is a minimum point. To find g, ,Newton's method would be:

prtl = PR +AP™ where: (10)
-1
8™ = [-v2e) ve@)

For problems, where F’(ﬁo) ) , then the Gauss- Newton method approximates V2$ by J7J

where :
O o i=tm
g = o0, =1,..m j=1,.,
Thus, we can write (10) as:
-1 -
s = [-27d) STR@) (1)

The vector, Aj)’" , is also the solution of the linear least squares problem
ming || LAB + F ] (12)

It is often advantageous to ' damp'" the step of (11), and use instead :
+ T orgen
AB™ =—p i+>\,,1] ITR@) (13)

Now Ap is the solution of the linear minimization problem with the following coefficient matrix
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J -F
Al O

m
(14)

our choice of A, will be such that || F**'||, < | F™ || . For A, sufficiently large, this condi-
tion will be true, as Ap becomes aligned with —V®(z) for A, »~ . To find the minimal length
solution of (14), we employed Golub's [6] GR method of solution. We employed it once to
reduce (14) to the form:

—

/I ~QF| R,
A/ O

_—n
(15)

where T is upper triangular, and then storing R, ,we repeatedly solve (18) (usually once or

twice ) to find a good choice of A\, ( see Osborne [7]).
Another method of solution of {(13) is using the singular value decomposition of the
matrix J :

L=UAYVT (16)

Here, A is a diagonal matrix containing the singular values of J. The columns of ¥V ( the
eigenvectors of JTJ ) corresponding to small singular values, represent the portion of
parameter space which cannot be resolved in a stable fashion. We will sometimes use (16)
at our last iteration to determine what portions of the velocity field are not "well'" deter-

mined.

Having the data vector , [i. as input to our inversion problem, and calculating L(ﬁ) using

our finite difference method, it is easy to calculate the residual vector f‘ However, we must

also calculate the Jacobian matrix -g—{' Tarantola [9] has discussed such calculations. His
p

method is based upon the linearization of the wave operator. If we write

n(x,z)=—2—(1—)= n%z,z)+en'(z,z) and P=P%+&P! where P° is the wave solution for
c®(zx,2

the slowness field n.% , then we obtain :
n® P% +n% ¢ Pl +e n' PO, 17)
+VEPO+eVE P = 6(X—X,) S(2) + O(¢?)
Hence,

PUX,t) == GUZX,t:X") * POu(X".t) n'(X") dX" (18)
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or:

o _
68

Here * denotes convolution in time and G° is the unperturbed Green's function. Whether to

— JGX,t:X7) * POy(X,t) 6n(68) dX*

use (18) as a formula for the computation of the Frechet derivative depends upon the
geometry of the problem under consideration. In general, we would have to numerically cal-
culate G()},t;)?s). This would mean a wavefield calculation for various source positions )?s.
The judicious use of a reciprocity relation could reduce the amount of calculation: however a
large amount of computation still remains. On the other hand, if the data consists of the
pressure field for many different source positions, then using (18) may indeed be appropri-

ate.

We will usually be considering in our inversion examples single shot data, with various

3

receiver positions. For these problems, it is more efficient to perturb g and form
B’ = p+eé; where &; =[0,0,..,1,.0]7 (the "1" in the j'th position) and recalculate the

wavefield. Hence,

op;

Numerical Examples

Example 1

For this example the source is located at a horizontal distance of 2.5 km. and at a
depth of .3 km. The velocity field was c(z,z)=1.5x(1+.2sin(12z)xsin(12z))km /s . To
generate the synthetic data, we did the finite difference calculations completely within the
VAX with a grid size of 601 horizontal points, 51 depth points, and 400 time steps with

At = 0025. Our source function was S(t)=.5H(t)e "1090(t—15)° The Fourier Transform, S (w)
2

oo B e —— —W
defined as fS(t)e"“" dt is approximately equal to .5 #40002'15“’. This is a

broadband source which has half-power at about 6 Hz. Using ¢ ~1.5km /s, then the half-
power wavelength is Ax . 25km . Thus we are , from the rule discussed above, using a suffi-

cient number of grid points.
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For the inversion we shall use for data, traces from 16 offsets
£;=.02+(i—-1)x.06 i=1,..,16 ,with 50 time samples, t;=.25+.01 x(j—-1) 7=1,.,60 for
each of these traces. This data for all 401 time samples is shown in Figure 2. For the finite
difference scheme in the inversion , we use a coarser grid than in the data generation; we
use 51 horizontal points and 26 vertical points. However, we still use 400 time steps, so
that during the iterations the velocity can increase to approximately 85km / sec without the

CFL stability requirement being violated.

c- I o N
3- /@?

A —

7 /\kﬁf‘“ —
o N :’/\/C

D~ P i

0O 200 250 300 350 400

a1

50 100 1

Figure 2. The Sixteen Traces used for Inversion

Along the top row, we will assumes that the velocity is known; it is 1.6km. /s. We will
have 18 parameters to determine. We take as an initial guess
c;(i=1,6 j=2,4) = 1.6km /s. In this run, we did not allow A, to fall below 1. In Figure 3
we show a comparison of the input data and calculated data sets for the initial guess. In

Table 1 , we show the residual ||f‘|| 2 » and the magnitude of the gradient vector H_J:Tf'll 2
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at each iteration. We also show the resulting velocity field at selected iterations in Figure

4a-4d. In Figure 4e, we plot the true field c(z,2) for comparison. The values of c;; , after

the final iteration are given in Table 2. In Figure 5, we show the data and calculated fields

after the second iteration.

Table 1 Iterations and Convergence

it 117112 [PEFaIP
1 9.30004 141.865

2 4.16730 52.5459
3 2.36897 47.1720
4 1.74593 16.3310
5 1.636574 6.23639
6 1.46706 1.82478
7 1.43601 0.47162
8 1.41921 0.30535
9 1.40803 0.23679

The final residual, for the velocity estimate after the ninth
1 #]]. = 1.401723.
Table 2 Final Values at Nodes
1 2 3 4 5 6
1.500 | 1.500 | 1.500 | 1.5600 | 1.500 | 1.500
0.7562 | 1.647 | 1.307 | 1.402 | 1.522 | 0.824
1.861 1.030 | 1.738 | 1.908 | 1.003 | 2.172
1.579 | 1.832 | 1.462 | 0.905 | 1.335 | 1.439
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We note that the true and inverted velocity fields qualitatively agree. However, it was
hecessary to use A,=1 throughout the calculation as otherwise "wild" estimates for the
nodes in the outer portions of the grid were obtained. Simple ray considerations, using our
source and receiver locations, show that very little energy propagates through these por-
tions of the grid. Thus, indeed, this portion of the velocity field is not well constrained from
the data. We note that the 4 vertical node points determine one cubic interpolant. We
show this cubic, determined by the inversion, and the true vertical profile for the centre

trace ( n, =26 ) in Figure 6.

amp

0 100 200 300 460 560 660 760

time

Figure 3. Discretized Data and the Generated Data for initial Guess
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Figure 4a. Initial Velocity Field (—1.5km / s)

P

= 4

Figure 4b. Velocity Field After First Iteration
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%ﬁ

N=—r

Figure 4c, Velocity Field After Second Iteration

N
S

Figure 4d. Velocity Field After Final Iteration
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A

Figure 4e. True Perturbation to the Field (1.5km. /s )

amp

100

(il

0 100 200 300 400 500 600 700 tme

Figure §. Discretized Data and Generated Data After Second Iteration
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0 S 10 15 20 c5

Figure 6. True and Approximate Vertical Profile for Centre Trace
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336 second
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333 trace
333 change
331 options
331 bugs
327 bytes
328 between
324 get
324 called
323 now
322 returns
322 possible
320 what
319 header
317 about
313 since
313 ancther
311 define
309 written
309 done
307 char
306 statement
298 them
298 include
297 symbol
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296 while
296 variable
293 machine
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293
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288
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non
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way

288 just

288 free
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285 version

282 language
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277 etc

276 long
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276 beginning
274 made
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271 through
267 available
266 compiler
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259 begin
256 order
253 start
253 open
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252 edit

252 disk

251 found
251 contains
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249 normally
249 level
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244 stack
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239 useful
237 both
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233 run
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229 manual
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