249

Matrix transposition and the 2-D FFT revisited

Stewart A Levin

Introduction

A simple, direct way to write an F-K filter program is to take an input nx by nt matrix
and Fourier transform (FFT) each trace to produce an nz by nf matrix. Then transform each
monofrequency slice to produce an nk by nf matrix that you filter by, for example, zeroing
the values in a quadrant. Now reverse your steps and inverse transform to an nx by nf and

then to an nx by nt matrix to obtain the filtered result.

This was done a few years ago at a contracting company | know and worked fine until
one day it was applied to a stacked section (a single 1000 trace file) instead of unstacked
CMP gathers (e.g. a thousand 24 trace records). For twelve hours, until the job was can-

celled, system throughput came to a standstilll

Analysis of system activity records and core dumps showed the cause to be extremely
high paging! activity during the z to k& transform. A bit of thought showed why: the nx sam-
ples of a monofrequency slice were internally separated by nf words of computer memory
rather than being adjacent. This forced the system to fe!:ch a new page for each sample,

about a thousand times more often than if the samples had been consecutive!

So here is the problem - even though the matrix fit in virtual core it didn't fit in the

available real computer memory.

»

L today's modern computer an executing program resides primarily on disk and only a limited number of segments
or pages of it are in the computer's memory at any one time. The operating system automatically updates old pages
on disk and swagps in other pages from disk as the program references different data areas of its "virtual core”.

SEP-35

Levin 250 2-D FFT revisited

Matrix transposition

One solution to this problem is to draw on sorting methods used to reorder extremely
large data files. Typically one sorts subsets of the data and then successively merges the
subsets to finish the sort. In seismic data, each trace is already sorted in the order each
element should appear in the output matrix and we need only implement a merging phase.
This is precisely the idea presented by Claerbout (1977) \A;here repeated merging is used to

"magically"” shuffle (sort) a card deck.,

To use this "trick” in a general framework, we first have to understand how a merge
operates on data matrices. So suppose we have two traces of data and we interleave

(merge) them. We have, in effect, transposed a 2xn array to an n X2 array.

a1 2 3 4 56 6 7 8 g 10 11
I 1 P T
0 6 1 7 2 8 3 9 4 10 5 11

If we had, instead, six traces, we could interleave six ways and convert a 6xn matrix to an
nx6 transpose. Alternatively, we could first merge traces 0 & 3, 1 & 4, and 2 & 5 to form
three double length traces and then merge these together to get the same final result. In
this way we have treated the 6xn input as a 3x&xn array which is successively

transformed to a 2xn x3 array and finally to an n Xx3Xx2 or n X6 output.

Here we see how factoring one of the matrix dimensions can reduce a large transpose
to a succession of smaller merges. In general, if we factor the number of traces nx into

N XngzX..n, we can transpose an nz Xnt matrix in k stages or passes:

nx xXnt
N XN g X X7y, XNk

'I'Lz)(nsx...xnk Xnt X'nl

Mg X7 g Xeoo X7y XTE X7 X0y

Ty XL XTL | Xood X Ty
Nk X7 | X g Xee e X T

ntx nx

Reversing the data flow, we discover how a sequence of "unmerges' can also tran-
spose a large data array. The one to choose in any givén application is the one that minim-
izes the number of 1/0 operations. With a bit of care, we can make the number of 1/0 opera-
tions per pass stay within a few percent of the desired minimum value of the total number of

data bytes divided by the physical blocking factor of the device on which the data is stored.

SEP-35

Levin 251 2-D FFT revisited

Thus minimizing the number of 1/0O operations is equivalent to minimizing the number of

passes over the data.

So, to design an optimal transpose we should select the largest factors possible in
order to get the fewest number of them. If we find that nx has the fewest factors we
would use our original successive merge scheme. Otherwise an unmerging algorithm is more

appropriate.

What limits the size of factors? Our F-K filter example tells us immediately that it is the
amount of real core available to store 1/0 blocks (or pages) of data to be merged. So, if we
have enough area for m physical blocks (typically of length 612 bytes or some muitiple
thereof), our factors cannot be chosen larger than m (actually m —1 since at least one

block is reserved for output and so cannot be used for an input factor and vice-versa).

Now we can describe out current transpose program, due to Rob Clayton, and see how
close to optimal it is. Rob, depending upon the dimensions of the matrix, uses either the

sequence

Algorithm 1

ne Xnt
N XN X X1 XL

N XN XN g X X7y _ 1 XL
My X7) XN o X X Ty _p X7k X7y
Mg pXTL | XM g X X Ty _g XL X7 _ 1 XNy,

Mg X7 XN XT3 Xeea XTy,
N XNt XN o XN g Xeu X7y

Nl XM XNgX.. X1

ntx ne :
or the sequence
Algorithm 2
nzX ni

L XN XT g Xeee XTe
T XNIL X1 XN X X
’nk_lxnk Xnr X’n,lx...xnk_z

.

MNeXNgXe XNy XNT X7
n Ianxnsx...X'nk Xnx

nt XNne

SEP-35

Levin 252 e-D FFT revisited

Both are implemented with Mg —j input buffers and Ny —j -1 output buffers at the j'th stage
(ng+1=mp=1). This scheme, therefore, requires that successive factors sum to no more than
the maximum number, MAXBLK (set to 300 in the program), of physical (512 byte) blocks.
Elementary calculus will show that the product of these factors will be maximized when nj =
n;_1 = MAXBLK/2. This is just over half of the MAXBLK-1 theoretical limit per factor previ-
ously derived and so generally one unnecessary pass over the data for each log; MAXBLK
number of factors is incurred. (This inefficiency was later corrected by changing the first
algorithm to be the reverse of the second and assigning only one buffer to the output (resp.

input) file during each pass.)

Another question of interest is how much auxiliary space is needed to transpose the
data? With the present scheme we need enough room to hold the original data plus up to
MAXF additional partial blocks where MAXF is the largest factor in the transpose sequence.
Because we flip the data back and forth between two work units we require, in total, twice
this amount of scratch work disk space. When would it be possible to transpose "in place"

and overwrite output blocks on previously read input blocks? When would it be desirable?

Clearly it is possible to overwrite input with output. Suppose we have n xm blocks of
data input to the pass for factor n. Then we can treat the input blocks as elements of an
nxm matrix of blocks accessed sequentially. The output is an m xn matrix of merged
blocks to be overwritten on the input. Thus block /=i,+i,n of the output will be overwrit-
ten on block J'=iz+i;m of the input. But /* = m/ mod(mn—1) as mJ] = i,m+iyzmn =
ig+i;m +iz(mn —1). Thus to find where to store successive output blocks we need only
increment a counter by m mod(mmn —1). The only ambiguities are the first and last blocks
which stay where they are. Of course [’ itself is in some scrambled order so we would fol-
low the chain back through each previous stage to find where to read and write blocks with

respect to the original sequential file.

S

One special case which greatly simplifies in-place transposition is when the dimension
not factored is divisible into an integral number of blocks, e.g. a multiple of 512/ ulen on our
system where ulen is the number of bytes per element of the data. In this case there are
no partial blocks to worry about and the number of blocks, D, of data stays the same in
every pass. Here, then, the input to the j'th stage is indexed by m xmzx - - - xmj_, mod
(D-1) and the output by mxmpx-:-xm; mod (D—1). Thus we need only keep
m XmgX * ** Xm;_; mod (D—1) as the increment of a counter modulo D—1. This is the idea
behind a clever field demultiplexing system patented not long ago by Carl Savit of Western

Geophysical.

On the other hand it may be needless to transpose in-place. Typically one has the

input data on one disk file and the output on another. Thus we already have two data-sized

SEP-35

Levin 253 2-D FFT revisited

areas with which we can work. | can think of only two situations in which we wouldn't use

the input/output areas for intermediate results:

1. If one or both files are tape devices.

2. If raw disk 1/0 ? is desired.

In both these cases it would be advantageous to transpose in-place if there were insuffi-

cient work space for two copies of the data.

Another interesting question is whether, by padding additional dummy traces and/or
samples, the transposition can be shortened? What is required is the number of passes to
be reduced by one (or more) without increasing (by padding) the total number of blocks
read/written in each pass so much as to offset the savings. We can set approximate
bounds for padding by assuming D blocks are read/written in each of nf passes before pad-
ding and D+ read and written in nf-1 passes after padding. This leads to the condition
D>Ex(nf-1).

Finally, a couple of random notes. On some machines memory is interlecved perhaps
2,4 or 8 ways. In this case it is fastest to use odd increments (1,3,5, etc.) in moving data
to minimize memory conflict which slows access time. In our program this might be done by
offsetting 1/0 buffers by 1 doubleword. For our machine this is not done because it has the

drawback of reducing the number of 612 byte blocks the high speed cache will hold.

Another note is that the Unix® popen and pclose subroutines permit us to transpose
data already in core without having to first write it to disk, transpose it separately, and then
read it back from disk. This also allows us to transpose more than one set of data simul-

taneously by opening two or more pipes to our fransp command.

Another approach

Matrix transposition using the optimized methods just described is not the only solution
to Fourier transforming large data sets efficiently. However, in order to optimize Fast Fourier
Transform (FFT) algorithms for large amounts of data, such as two and three dimensional
seismic datasets, an intimate understanding of the internal computations and data shuffling
of the basic FFT algorithms is required. The author knows from experience that this can be

a trial and so we digress to explicate the method based‘!’upon a unified approach to the FFT

2 our operating system permits circumventlon of normal system buffering and device access. Such "raw 1/0" is less
flexible but more efficient than normal "cooked 1/0".

SEP-35

Levin 254 2-D FFT revisited

found in Rabiner and Gold (1975).

The 1-D FFT

The FFT algorithm (actually there are several very closely related ones) uses a method

of divide and conquer to compute the discrete Fourier transform (DFT)

X(k) = Y z(n)e Rikn/N k=01, ... ,N-1 (1)
n=0
of an N point sequence xz(n). The most common case is when N is a power of two. Here let
Wy represent the phase rotation exp(-2mi/N) and write, following Oppenheim and Schafer
(1975),

Xk) = Y z@WF + Y z(n)wEt (2)

n even n odd
Ns2-1 N/2-1

= z(Rr)WFE™ +) z(r+1)wErik (3)
=0 r=0
Ns2-1 Ns2—-1

= zROIWE,2 + WE Y z(2r+D) Wik, (4)
r=0 r=0

= Glk) + wh H(k) (5)

where we recognize G(k) and H(k) as N/2 point DFT's. Actually these shorter DFT's are
defined for the range £ = 0,1,...,N/2-1 but we leave it to the interested reader to verify
that they extend by periodicity to other values of k. Therefore, noting W{/? = —1, we have

the following prescription

A

X (k) G(k) + WEH(k) k=0,1,..., N/2-1 (6a)

X(k+N/2)

G(k) — WEH(k) k=01, ..,Ns/21 (6b)
This is called a butterfly because a signal flow diagram

G(k) — O O

WhH(k) — oX,)o

takes the form of a (stylized) butterfly.

The FFT algorithm applies this splitting recursively to generate the two N/ 2 point

SEP-35

levin

255

&-D FFT revisited

DFT's from 4 N/ 4 point DFT's, etc. For N = 8 the signal flow diagram takes the form

X (0)

Fig. 6.13 Rearrangement of Fig. 6.10 with both input and output in

normal order. :

which is often rearranged to an "in-place" form such as

or

p X(0)

X(1)

X{(2)

p X(3)

x{4)

X (5)

Fig. 6.10 Flow graph of eight-point DFT using the butterfly computation

of Fig. 6.9.

x(0)o— - X (0}

x(7) o X(7)

Fig. 6.12 Rearrangement of Fig. 6.10 with input in normal order and output

in bit-reversed order

SEP-35

Levin 256 2-D FFT revisited

These flow diagrams point up an interesting complexity to in-place processing: the out-
put sequence is scrambled with respect to the input order. This reordering is known in the
trade as bit reversal. Furthermore the W} twiddle factors are also in a similarly scrambled
order. Conversely, the in-place diagram highlights a desirable feature of the algorithm we
will want to exploit later: where the algorithm has two inputs to one stage of the computa-
tion, the right choice of four inputs can be carried through two stages; by extension the

right choice of eight inputs cascades through three stages, etc.

This successive subdivision offers significant computational savings with O(N loghN)
computations as compared to O(N?) for direct DFT evaluation. Rabiner and Gold cite a two

order of magnitude improvement for N = 1024.

The 2-D cross~-vector FFT

Two (and higher) dimensional discrete Fourier transforms can also be evaluated with
the aid of the FFT algorithm by transforming all rows and then transforming the resulting
columns (or vice versa). As Oppenheim and Schafer point out, a fundamental difficulty with
multidimensional transforms is that the amount of data generally exceeds available random-
access memory. Indeed this is why we just looked at matrix transposition - one solution is
to transform the columns of a data array on disk, transpose the data using the {clever) algo-
rithm | outlined, and then transform the new columns (which are the rows of the untran-
sposed matrix). A different method is presented in SEP-15 by Clayton (1978) in which the
(harder) row transforms are performed by transposing the FFT algorithm rather than the data
matrix. In other words, one places a column vector at each input node of the butterfly,

rather than a single number, and obtains a corresponding column vector at each output node.

It is the implementation of this second method that we now address. As most array pro-
cessors have highly efficient microcoded 1-D FFT algorithrms, our goals are to answer the

following questions:

1. How can we minimize 1/0 load in the algorithm?

2. How can we increase parallelism in the approach to offset the speed
advantage of array processor FFT's?

3. Having optimized as much as possible, does the vector FFT emulation save

enough time by avoiding matrix transposition to make up the difference?

To put these questions in perspective, we emphasize that both FFT via matrix transpo-

sition and the transposed FFT algorithm require, for a square NxN matrix, O(N? logN) 1/0

SEP-35

levin 257 2-D FFT revisited

operations to implement the same arithmetic computations (albeit in different order). There-
fore careful attention to constants of proportionality is needed to compare such algorithms.
For this reason, the first two questions are of extreme practical importance. The matrix
transpose algorithm has to move elements around to resort them - a liability - but, for non-
square arrays, reduces the number of 1/O passes over the data by using the smaller of the
matrix dimensions; the transposed FFT reckons only on the number of columns. Also, there
may be overriding requirements, such as a need to have the transform output in a tran-
sposed format for later calculations, which make matrix transposition the better choice

regardless of the relative efficiency of the two approaches.

Let us first consider the speed advantage of array processor FFT's and whether it can
be overcome. This speed arises from pipeline processing wherein arithmetic computations
and data access are all done simultaneously. To simplify the discussion assume an FPS
array processor in which data access can, like additions and multiplications, be initiated
every machine cycle. (This is not the case for our FPS - we can only fetch/store every
other cycle.) For this FPS, the 1-D FFT algorithm is essentially compute bound, that is there
is almost no waiting for data to be fetched before computations can proceed, whereas the
individual complex vector multiply-add algorithms are not and therefore spend a good part of
their time sitting idle. This leads us to consider whether a bit of microcode of our own can

reduce or eliminate such unused time.

If the basic vector butterfly were coded we would have 8 data transfers, 4 real multi-
plies, and 6 real additions per loop, still 33% inefficient. (A multiply and add can be done
simuitaneously and so the 8 data transfers are the limiting factor.) However, if we microcode
two stages of the butterfly with four input vectors and four output vectors we turn the
corner and do become compute bound. This still holds true if we use the simplified rear-
rangement known as a radix 4 butterfly (Oppenheim and Schafer pp. 314-317) reproduced
below. Therefore we can achieve parity in computational ;peed by writing a bit of our own
microcode. (For our FPS a radix 8 butterfly, which uses 32 real multiplications, 66 real addi-
tions, and 32 data transfers, is needed to avoid waiting on memory.) Here at SEP Rob Clay-
ton has written microcode to handle an arbitrary power of two radix by decomposing it inter-

nally into a sequence of radix two passes.

To take full advantage of computational parity requires corresponding savings in disk
and array processor 1/0. Here we want to proceed through as many FFT stages as possible
before "coming up for air"'; i.e., having to transfer data vectors between core and array pro-
cessor or disk. Naturally we need to know how to select the right sets of column vectors
and which twiddle factors to use with them. To grasp this we can relate the FFT to the fac-

torization approach to matrix transposition. For this 1 borrow a page (371) from Rabiner and

SEP-35

Levin 258 2-D FET revisited

Gold.

O<rcaq-!

Fig. 6.29 Alternative arrangement of Fig. 6.28 resulting in savings of
multiplications.

Suppose we have a sequence . xM elements long; i.e. write z(n) = z(I,m) and let the

transform index k likewise index an Mx/I (i.e. "transposed') N point DFT. Then we can

write
M-1 L-1 R
X(k) = X(s,r) = Y)Y z(Im)wiMrmIUr+s) gzs<[-1 O=r<M-1 (7)
m=0 (=0
H~-1 L-1
= WEmwips) z(l,m)WE (8)
m =0 1=0

which has the interpretation
1. Compute the L-point DFT of each column.

2. Obtain a new array h(s,m) by multiplying by W,
3. Compute the M-point DFT of each row.

SEP-35

Levin 259 2-D FFT revisited

Here we see a 1-D DFT as similar to a 2-D DFT with the addition of an intermediate

"twiddle" step and the final transposed output. More generally a k-fold factorization

T | XL g Xa s X (9)
transposes under the algorithm into

Mg Xoee XTE XN . (10)

which, for factors of two, gives rise to bit reversal.

For optimization of the cross-vector transform, then, we would like to decompose N into
a product with the largest factors available storage will allow. Therefore, just as in matrix
transposition, we factor the (row) dimension into the product (9) such that n; blocks (512
bytes for example) fit in the array processor. (Depending upon 1/0 configurations, it can be
advantageous to stage additional data in core so as to feed the AP new blocks more
rapidly). Transforms then proceed via Rob Clayton's microcode for m; using appropriate
twiddle factors and the result is placed back on disk.

Separating the forest from the trees

Assume now we are in the typical case of having to compute FFT's for data with dimen-
sions exactly a power of two. From our discussion above we might draw the following princi-
ple: With suitable attention to indices, a Z**M by 2%* N submatrix held in core can be
advanced through M column stages and N row stages of computation before writing them

back to disk.

We see that the individual dimensions are immaterial: 2**K elements held in core can be
advanced through K computational passes. Therefore we might well expect that a dataset
with 2**/, elements can be transformed with (L+ 1)/ K (rgunded up to the nearest integer)
1/0 passes. (The +1 assumes one pass of bit-reverse reordering.) Researchers have proven
this statement to be essentially correct. They show that because we access data in blocks
it is the number of blocks rather than the number of elements in the data that in general
determines the number of passes required for the transform. Fraser (1979) gives the for-
mula (L+ 7—B)/ (K—B), where blocksize is 2**B elements, and a computer program imple-
menting such an algorithm. It is a straightforward, albeit lengthy, process to adapt it to per-
form ail computations in the array processor. Microche similar to that described above

would need to be written to take advantage of parallelism.

SEFP-35

Levin 260 ' 2-D FFT revisited

Conclusions

When the humber of rows exceeds the number of columns, the transposed FFT algorithm
can be implemented using the same number of 1/0 operations as the alternative matrix tran-
spose approach and can be made just as computationally efficient in the FPS array proces-
sor. The transposed FFT algorithm is in this case superior because it avoids the in-core data
shuffling of the matrix transposition algorithm. When the number of rows is significantly less
than the number of columns, matrix transposition becomes the preferred method, using fewer
1/0 operations. Both methods are limiting cases of the optimized mass storage FFT of Fraser

which resuits in fewer /0 passes for large, approximately square data matrices.

REFERENCES

Claerbout, J.F., 1977, How to transpose a big matrix, SEP-11, p. 211-212.

Clayton, R., 1978, Two-dimensional Fourier transforms without transposing, SEP-15, p. 247-
250.

Fraser, D., 1979, An optimized mass storage FFT, ACM Transactions on Mathematical
Software, Vol.5, No. 5, p. 500-517.

Oppenheim, A.V. and Schafer, R.W., 1975, Digital signal processing, Prentice-Hall, New Jer-
sey.

Rabiner, L.R. and Gold, B.,, 1975, Theory and application of digital signal processing,
Prentice-Hall, New Jersey.

SEP-35

