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On Determining the Structure of a Medium Using a Multi-
Fold Seismic Observation System

G F. Zherniak*
Translated by Chuck Sword

In this work is examined the problem of reconstructing the structure of a medium, using
the full wave field obtained by an observation system of multi-fold coverage. Algorithms are
described which allow one to determine the structure of a medium, when several assump-
tions are made about the form of the wavefield in it. Variants of lineal (2-D) and areal (3-D)
observation systems are examined. Results are presented of testing the algorithms on data
from humerical models.

In connection with the increasing difficulty of the problems being solved by exploration
seismology, there has arisen the need for processing methods which more fully take into
account the dynamics of the seismic wavefield, and which are suitable for media that have a
substantially three-dimensional structure. At the present time, wide distribution has been
given to procedures for obtaining depth sections based on methods of wave migration.
These procedures are usually applied to multi-fold data that has already been CDP stacked.
Because of this, the use of migration when steeply-dipping boundaries are present proves to
be ineffective. This is connected with distortions in the wavefield caused by CDP summa-
tion, as well as with the discrepancy between the CDP-s:cacked time section and the zero-
offset experiment assumed by most migration algorithms. Particular difficuities arise in the
use of these methods in substantially three-dimensional media, when the depth sections

obtained along various traverse lines agree poorly with each other.

In the present work is examined the probiem of obtaining an image of the medium
directly from the data of various forms of multi-fold seismic observation. The redundant
information provided by similar systems is used to increase the stability of the image and to

AN

filter out wave-noise.

Dr. Zherniak is a researcher at the Computing Center of the Siberian Branch of the USSR Academy of Sciences, in
the city of Novosibirsk. This article was sent to us by Dr. Zherniak in the form of a preprint.
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Zherniak (Translated by Sword) 202 Determining the Structure of a Medium
Let us look at the equation
1
AU ~ ———Uy = =6(R—Ro)f (t); (1
'UZ(R) tt 0 f

R =(z, Y, z), Ro = (-’30, Yo Zo),

which describes the propagation of waves excited by a source at point g, in a medium
characterized by a velocity v{(FR). Having obtained some velocity v, = const, we present

equation (1) in the form

AU ~ 2o Uy = ~8(R—Ro)f (£) = #(R) —~— Uy; (2)
vE Vg
2
B(R) =1 - 9
v

Let the signal emitted by the source, f(£) = 0 for £ <0, and let the velocity function

¢(K) = 0 outside some closed area .

Having performed a time-domain Fourier transform, we give the resulting Helmholtz equa-

tion in integral form [4]:

, HEIR-Ry]
X ,~kIR=R|
4ﬂ{c(1?1)U(Rl, Roy 1) g AR

where & = w/ v is the wave number, and #(w) is the spectrum of the signal f(¢). The radi-

ation conditions are assumed to be fulfilled.

Let there be, at surface z = 0, a recorded field /(#7, R, t), excited by sources on the
surface z,; = const. We will assume that the signal f (¢) is known and that the inhomogene-
ous area [ lies lower than the surfaces z = 0 and z;. Then the frequency spectrum of the
observed field is determined according to (3), which will be looked upon as an integral equa-

tion concerning the unknown velocity function 8(R).

The first term on the right side of equation (3) corresponds to the observed direct
wavefield from the sources, and under known conditions of shooting and recording it can be
removed from the recorded data. The field in the mediurp, U(R,, Fg, k), which enters into
the expression under the integral, is unknown and depends on the structure of the medium,
&(R,), which in its turn must be determined. In connection with this it is necessary to
specify an assumption about the field in the medium, an assumption which naturally narrows

the set of allowed models &(?).
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We will assume that in several sub-volumes D; C D, this expression is appropriate:
—ik|R;-R,]

U(R,, Ry, k) = ®(kv )—
pe “an|R,~Rq]

+ U (R, Ro, k), (4)

that is, the field in the medium has a composition similar to the field due to a point source in
a homogeneous volume. This condition, under which the secondary field [/; can be
neglected in the case of weak scattering, is called the Born-Rayleigh approximation, and the
possibility of its use for the solution of an equation in the form of (3) has been investigated
by a series of authors. In works [8] and [9] it was formally used for the construction of
algorithms to determine the velocity structure of a medium, based on solving the integral
equations. However, as was shown in [5], when the conditions for applying the Born approx-
imation are strongly adhered to, there arise substantial limitations not only on the deviation
of the velocity function from its mean value, but on the size of the inhomogeneous area D as

well. Because of this, only a few functionals of &'(R) vield a stable determination.

Here we will not require that the secondary field U/; be small in the medium, and its
influence will be looked upon as an effect of regular noise. Fundamental to posing the prob-
lem in this way are both the redundant information in the data, the presence of which allows
us to filter out the noise field, and our experience with using the CDP method, which accom-
plishes a similar filtration. However, in the problem posed thus, we will determine not the
velocity function &( RF), but some image of it, ¢ (R), an image which reflects the peculiarities
in the structure of the medium. This is connected with the fact that the secondary field U/,
can have elements that are similar to the direct field, and the effect of these elements is

not suppressed by filtration [5].

Taking into account all of these assumptions, we write the observed field in the form:

2@(1(.1} )

o EIRITRY] ik IToRy|

dR, + U(r, o k),
| R1—Fo] |m7—R,| ! °

r=(z,¥y), 7o =(zg, Yo, 6))
2 o 2172
|Ri~Rol = [(z1-20)% + (g1-y0)? + (2,207
and we will look upon the second term in the integral equation (5) as regular noise, produced

both by secondary interactions and by radiation from the area outside of D,.

~

We will examine two different variants of a system of observation.
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Observational Variant |

The shots and receivers are laid out over the whole area, and they are laid out indepen-
dently. That is, a five-dimensional wavefield is recorded, the temporal spectrum of which will
be described by equation (5). When we don't consider the noise field, performing a Fourier

transform on (5) over the variables r and r gives us

Ulk, xq, kv) = Fr.ry U(r, rg, Ic)} =

k28(kvy) #il(z,-20)VEE kG + 2, VEEAZ]

c(i+ug 21)
4 f o1 VE? Kk - VE2—x?

—o0

dz, , (6)

K=Kz, 6y)s Ko = (K20, Kyo).

Here we used the formuia for the spectrum of the fundamental solution [3]

e -ikIR] 5 g ¥ilz| VRSP .
= 22m
| 71 i k®—x*

and we took into account the condition that ¢ {(x+kg, 2,) = O for z; < 0, 2, < z5. The upper

r

sign in {6) and (7) corresponds to the case k > O.

We introduce the focusing function for plane z:

21/ k) Mo/ k) VEZ—kf + VE®—K®  Li[(2 2 )VEEAE + 2 VEEAZ

]
Yk, g, &, 2) = .(8
(&, 0> ke, 2) s T ] (8)
The function TI(z) is defined as:
I(z) =1for |z] =1,Iz) =0 for |z]| > 1.
Let us look at the integral transformation of the spectrum of the observed field
Wk, kg, 2) = fU(rc, kgs k¥ ke, kg, Kk, 2) dk. (9)

The presence of the factor [I{x/ k) in the kernel (8) of the transformation (9) indicates that
only the homogeneous planar waves of the spatial spectrum are used. We will use the

representation in (7) for U(k, xg, k), and introducing the symbols
kr =Kk +Kg Y==K~ K
172 1/
o R A 2| AN T P ) 2]

we will write (8) in the form
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k. +y
2k

kr -7

H2k

X (10)

Wlky, z,v) = ér—ffc(lcr, z DI

% & ] (axt+B) eﬂ(zl~2)(a+ﬁ) dz  dk.
o f
In order to investigate the integral transformation of the field we will apply to relation (10) a

Fourier transform over z, which gives us

o

W, y) = fL‘(u)H

[kr+7

| 2k H[kr r

| 2k

1k | (a+pB)
af

8(k, z(a+p)) dk, (11)

where v = (k;, k) = (k;, &y, k).
In order to integrate over k we will transform the é-function from (11) using the formula
[4]

o(k ~ky,)

6(p(k)) = ; To e’

where k,, are the roots of the equation

plk) =k, + Pcz—(kﬁy)z/ 4]”2 + [kz—(kr—'y)z/ 4]1’2]

with regard to k.

Having taken into account the correspondence between the signs (3 in the given d-function

and the sign of k&, we find

kry af
6(k (+):H[T 8(k —k | 5), 12
(ks ) = T3 ) o, P12 (12)
(k )2 kZ(kE 2‘)* k4 /2
where k;z = )7 e ¥y ¥ e
After we integrate over k we obtain
_ kr+y kr—y kery ]
W(v, y) = c(WII 2%, 5 II TP I1 peal (13)

After we express the product of the first two Il-functions in (13) in the form of an

N

equivalent system of inequalities

| kr+y] < VEE+EZ+9P+ e y)?/ k2
k.+y

2k

kr -7

IT
2k, 2

I

| kr =y < VEF+EZ+PP 4k 7R/ kf
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k2 k k2
=> =% I ’27' =2 forall -———0, (14)
=] k ery|
we find that
k. + k,—
H T 7 H T 7 - 1,
2k, 2k 3
and consequently
k
ano=cwH4£Z]. (15)
z

In this manner, the function # (v, ), determined by the transformation in (9), coincides with
the spectrum of the image of the medium c(v), for all ¥ that satisfy the inequality
|k, 7] < k?. Thus 7y represents a free parameter, since the spectrum of our sought-for
function ¢ (1) doesn't depend on it. At the same time the noise field from (5), which by
assumption is not described by the integral representation that we used, becomes, as a
result of the transformation, dependent on y. Therefore integrating W (v, 7) over y (which
corresponds to low-frequency filtering) must lead to a stacking of the signals described by
our model, relative to the noise field. So, after we perform the integration with a weighting

function k,./ 2kf, to compensate for the inhomogeneity of the stacking, we obtain

1
2k

1) = g [ W, Dk dy) =c (). (16)
z Yo

The inverse Fourier transform of the function #,(v) restores in area D; an image of the
medium ¢ (R), complicated by the remaining regular noise. To calculate the intensity and
area of dissemination of the noise in the general case is difficult. However, an extremely
simple scheme is used in the CDP method for stacking redu‘r;dant information, and our experi-
ence in applying this scheme confirms the possibility of suppressing wave noise, in particu-

lar, multiple noise.

Because the solution was obtained using the given assumptions about the wavefield in
the medium, the direct use of this algorithm is well-grounded for those parts of the medium
where the field due to the sources is similar to the sources' direct field in a homogeneous
space. An example of such a model is a layered-inhomogeneous medium with curvilinear
(optionally smooth) boundaries and sufficiently small velocity inhomogeneities within the
layers. In this case it is possible to obtain an image of the medium right up to the "strong"
upper boundary S,, and to obtain the position of the boundary itself. Afterwards, with the

help of a full recalculation of the field over the receivers and sources, it is possible to
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approximately transfer the entire system of observations to the boundary S;, which makes
it possible to use the algorithm for determining the structure of the next layer, and so on.
We should note that the operator for the recalculation of the field of homogeneous planar
waves, which is used in this algorithm, enters into the focusing function (8), guaranteeing
the stable continuation of the field in the medium, within the framework of the algorithm. The
values of the mean velocities in the layers might be obtained either from a well log, or from

some selection method analogous to the "velocity spectrum’ algorithm in the CDP method.

In the resulting algorithm it is possible to take into account the condition when the sur-
face of observation is the boundary of the section. For instance, in the case when the sur-
face of observation z = O is a free surface, on which U(#, Ry k) = 0, and the normal
derivative of the field, U, (R, Fg, k)| ,-¢ is measured. For a sufficiently small source depth

2z, the radiation function takes on the form

a -ik|R-Ry| |

dzq |4m|R—Rol| |’ a7

GZO(R, HQ, k) RI22¢

and equation (5) for the observed normal derivative of the field is

k2o (k ~
u,(r, ro,k)m-%[c(ﬁl)czo(ro, Ry k)G, (r, B, k)R, + Ur, 7o, k). (18)
0
1

In order to obtain a solution of the same form it is necessary to introduce the previously-
described transformations, introducing into the focusing function the supplementary multi-

plier

1/ [22oVEkR—kE VER—K?

In the case of the planar (2-D) problem the spectrum of the fundamental solution of the

Helmholtz equation has the form

i a2t 2 'ieﬂm\/k e
F, ---4—-H;S (kVzR+z®)| = = TRk , (19)
x

where k_ is the spatial frequency corresponding to the vector ¢ from the three-dimensional
case. That is, {(19) has the same form as (6) does. Because of this, the method can be
transferred to the planar case, which simplifies the study of several general characteristics

of the algorithm.
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Observational Variant Ii

The implementation of the full areal (3-D) system of observation described above gives
rise to a series of difficulties of a quantitative nature. In connection with this, there is a
practical significance to the problem of modifying the algorithm for areal observation sys-

tems which provide information of a lower dimensionality.

Let the sources and receivers of the field be located on the plane 2z = z; = 0, and let
there be implemented a system of paraliel profiles with multi-fold coverage. That is, for each
profile let the value of the field be recorded only on the straight line y = y;, which is the
line along which the source travels. Such an observation system, while still redundant, gives
data of one less dimension. The observed four-dimensional field, taking into account the
assumptions introduced previously, is described by relationship (5), but with z = z; = 0,

Y = Y, to wit:

_ k?8(kv,) o eV (2120 ly 1 -y)P 42 f
Ulz, zo, y, k) = c(R) = X (20)
i (4m)? ! V(z,—z )P +(y,—y )P +zf

o eV (-2 vy )Pz}

X dR, + Uz, zg, y, k) .
Viz -z, +(y—y,)?+2? ! 0¥

In order to obtain a solution, let us carry out the sequence of transformations analogous to
(6) - (16).

Let us introduce the Fourier transform of equation (20) over the coordinates z and x

of the receivers and shots:

Ulk, kor Y, k) = Fp p [U(z, Zg, y, k)] =

k*o(k
= &)—ffcocﬂco,yl, 1)H62)[\/zl + (y1 —y )P ViR - (21)

x[r[(gz)[\/zi2 + (y-y )P VEk? — 1602] dy,dz,

Here we used the equation from [7]

ik VaTia?
F. [ew—am = —mi Héz)[a\/kz —/cz] a>0, K=k

~

The integral over y, in (21) is a convolution integral, and therefore, after we perform the

Fourier transform over the profile coordinate y, we obtain

k20(kvy)

UK, Ko, Jeys k) = —— & S ctetio ky, 21)G, Koy Ky 21, KDdz (22)
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where Gk, g, ky, 21, k) = F, [Héz)[a y +512_]H32)[5V§2§-;?] ,
o = VE? — &7, 6:\/?2 —-/coE

Let us determine the spectrum of the product of the Hankel functions in (22), in the area

o? >0, 8% >0, (a+p) = k?. We will use the formulas from [6, 7]

HP(@2)HP (y) = %—IH(SZ)[\/xZ + y? + 2zych(2t)|dt,

— 2 2
R @bV T a?)| = 22 A
Y VbEk?

and we represent this spectrum in the form

2 —1'.Izll'\/ma+ﬁa+201ﬂch(t)—lt:z
G(lc,ic,k,z,lc)—— dt. (23)
e m \/rx + % + 208ch(t) — k7

This last integral can be approximated with the help of the method of stationary phases,
assuming here that kz,; > 1, [3], that is, assuming that the distance to the area D, is very
much greater than the wavelength A = 27/ k. The estimate for the function G, obtained

with these conditions, has the form

8 2z i (lzy 1/ (a+B)?-k2 —n/4)
G(K;) Ko ky) 2y k) R —— . Y1/2 (24)
Tz, [cxﬂ\/(a+ﬁ)2—ky2]

Expression (24) was obtained for &k > 0, but from the properties of the Fourier transform it

follows that

*
Gk, kgy ky, 21, k <0) = G (=K, —ko, —ky, 2,, k >0),
so that in any case it reduces to a change of the sign in front of the index of the exponent
in (24).
Having obtained an expression for the spectrum G in (22), and having taken into

account the condition that ¢ (®) = O for z < 0, we obtain the relation

™ PRVIPIr
- ]1,2 dz,, (25)

k*®(kvg) fc(/cﬂco, y,zl)

s Koy Kyy k) R —
Uk, ko, ky, k) 42w

[aﬂ\/(cxﬂ?)z k2

which approximately expresses the space-time spectrum of the observed field.
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Let us define the focusing function as

¥k, ko, ky, k, 2) = (26)
4e ¥t/ |[H [KL 11 ky | (a+p)?e ST !
Va2m|k | $(kvg) | & o+B [aﬁ\/(oﬁﬁ)T:_ké] TJ )

in which the product of the II functions expresses the limits on «, B8, and k, that were

imposed eatrlier.

When we put into the integral transform (9) the expression just obtained for the wave-
field and the function ¥, and make the change of variables k, = £ + g, ¥ = i — Kg, we find

that

k, +'y ky—y k
W(kt’ ky’ z, 7) - __ffc l(kz’ ky’ ZI)H H 2k a:‘lﬁ X (27)
2 ¥ilz-2)\V (@rB)f — k2
ILALCSY: A R —
oV (a+B8)? — kf
where ¢, (k;, ky, z,) = c(kz, ky, 2,)/ Vz,.
Let us apply a Fourier transform over z to relation (27)
W) = F [0k, by, 2, 9)] = (28)
N A L I R I L G PR G it
= [e,om ¥ =7 || *u S,
’J. | 2k 2k | |o+f ) Bt B - k2
v = (kg ky, k)
As a result of transforming the d-function in (28) we obtain
V0a+8? — k72
V4 ¥ —kZ| = 8k ~k H B , 29
oles # VOB = 6k k1) 12 K(a+r@F b=k (29
Jire

k27 + p22 47D + it |
At J

WE=k2+kZ, kip=1

p—ae:

Having obtained, with the help of (29), an integration‘\over k, we find

Eamy |l Ky | [key } (30)

ko, +
W(V,7)=C1(V)H[ 7 ]H 2k12 j lOH‘ﬁ} l/J«z

(212 )
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When we represent the 11 functions from (30) as a system of inequalities we obtain

k,+y ky—y
H[ z HI z =1,

l2k1'2 l2k1.2

kzy k, _

H[ WP 1 a+f }k=k1'2 - @1
- H k27 ]H 2Mky — kz7 ]
- 2 kov—iRl + Lk v+uR - 2
) [ Heey—® + kg y+u®| ©o

Consequently,

k
(v, 9) = cl(u)H[ =7
W2

(32)

This is the relationship whose form coincides with (158). Integrating (32) over the free

parameter vy, we obtain the spectral function of the image

kel
") = 25 lW(u, Py = ¢, (33)

and the inverse Fourier transform from which we reconstruct the image of the media is

F;[Wl(u)] = c(R)/ V7 . (34)

Let us particularly examine the case when the spectrum of the signal #{(w) is deter-
mined only in the finite band of frequencies |w| < (). Let us assume that &(w) = 0 for
[w] > Q, and let us change the deconvolution multiplier 1/ ®(kwvy) in (26) to 1l(k / K) (kv ),

where K = )/ vgy. Upon performing the integration over k, we find

koY [\/Mz +kE+ R+ kR WP
W(v,v, K)=c¢ (V)H[ Z 1 . (35)
e 2K

Let us represent relation (35) in the form of a system of inequalities:

e, (v)  for |yl =u?/ lkz|, |yl =pVaKc/ |v]?-1
W, 7 K) = (36)

0] for |v| > 2K

In the coordinates k; = |v]|cos(p,u) = |v] |sing| the system of inequalities (36) decom-

poses into different inequalities for different areas
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f

c,(v)  for |y| < |sing|VAK? -7, 2K|cosg] < |v]| = 2K
W(v,7y, K) =1 c,(v) for |v]| <|v]|sinfp/ |cosp], |v| <2K |cosp]

0] for |v| > 2K

\

After integrating form (33) over ¥ we obtain

(

¢,(v) for |v] <2K|cosg|
Wy, K) =1 e (W]catg|VAK?/v® —1 for 2K|cosg| < |v| <2K

0] for |v| > 2K

\

(87)

(38)

Relation (38) shows that the non-zero values of W,(v, K) are concentrated in a sphere of

radius 2K, from which it is possible to make an estimate of the resolving capability of the

image, and which allows us to construct an inverse filter for the optimal reconstruction of

c.(R, K). Besides this, the solution for a finite range of frequencies can be the formal basis

for allowing the transform that we are examining. We should note that the analogous esti-

mate of the effect of band-limiting the spectrum of the signal can be done for the case of a

full system of observations as well.

In the particular case when the velocity function does not depend on the variable y,

that is, when the structure of the medium doesn't change perpendicular to the profile, in

order to solve to solve the imaging problem it is sufficient to have the data recorded along

one profile. Equation (20) is written in this case in the form

—ik\/(xl—zo)ai-ylz +z12)

k2d(kvg)
Ul(z,xo, k) = U(x, Zo, Y, k)y:O = —__ifcl(xl’zl)e

X
(4m)? D, Vi(z,~zo)?+yf+2%?)

e—ik'\/(z—zl)2+yf+zf)

dR, + Uz, 2o, y, k) .
Viz-z)2+yf+2§) ! oY

and its spatial spectrum

k20(kv,)
Uik, kg, k) = ch(/cﬂcqul)x

x [ HEav/zE +yF|HPleVEE ¥ yE]dy dz,
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The inner integral in (40) is equal to the previously-calculated Fourier transform of the pro-
duct of the Hankel functions with ky, = 0. Consequently, the results we have obtained can
be applied to this particular case, if in the equations elucidated above we assume k, =0,
|l = lke|.

The described approach to the problem of determining the structure of the medium,
while remaining limited by the framework of the wave equation, just as the CDP and wave
migration methods are, can in principle be applied to the processing of data from the obser-
vation of real seismic wavefields. Thus a relative widening of the class of models of media,
and an allowance of sorts for the dynamics of wave processes, can turn out to be substan-

tial in the case of a complexly-structured medium.

Numerical Experiments

Without touching on the particularities of applying the algorithms to data from finite and
discrete observation systems, let us look at the results of applying them to material from the
numerical modeling of wave processes. On the basis of the schemes described, experimen-
tal programs were developed for the two-dimensional and three-dimensional variants of the
problem. In connection with the processing of synthetic fields, the two-dimensional case
was researched in more detail, since it is simpler in its numerical implementation, but it

reflects the possibilities of the three-dimensional variant of the algorithm.

Model 1. Two homogeneous flat layers over a half-space, with velocities 2,2.5 and 3
km/sec respectively. The observation system: 60 receivers 50 m apart, lying on the
free surface of the uppermost layer, and 60 sources at a depth of 100 m below the

receivers. The length of the layers: 800 m.

The calculation of the wavefield was carried out with the halp of a program that numerically
solved the wave-equation forward dynamic problem by the method of the incomplete division
of changes. Because of the great depth of the buried sources, there appeared, reflected
from the free surface, a ghost wave, with an intensity close to that of the direct field in the
medium [11].

The temporal wave field computed at the observation points was decomposed into 100
harmonic components in the range 6 to 30 Hz. The images were formed on an orthogonal grid
made up of 64x64 elements with steps Az = Az = 50 m, fpr two variants of the velocity v,.
In the first case the velocity was chosen to be equal to the velocity in the upper layer -- 2
km/sec. In this case, by the conditions of the algorithm, the waves reflected from the lower
boundary of the second layer turned into regular noise. In the image (fig. 1), only the upper

boundary of the second layer was reconstructed clearly, and the images of the lower layer

SEP-35



) 300

0

({
EUTLELEELLLLILE0LLLEELLELELLLLLLL LN

i

M

SEP-35

Il Mﬂ il

e medium (in model 1) with vy = vg,,(2).

Zherniak (Translated by Sword) 214 Delermining the Structure of a Mediu



Zherniak (Translated by Sword) 215 Determining the Structure of a Medium

and the field of the multiple waves cancelled out. In the second case; by analogy with wave
migration, a model with an average velocity depending on depth, v = fu(wg(z), was used.
Both boundaries were reconstructed in the image, and under them can be observed noise
images, corresponding to the reflected ghost wave (fig. 2). We note that in the first case,
the suppression of these reflections was carried out by means of the method of correlated
filtering.

For a comparison to these results, the seismograms were CDP sorted, and they were
processed by the method of "CDP stacking, wave migration'’. The spatial-frequency variant
of migration was used, with v, (z). The stretching of the signal, substantial when CDP
stacking is done over large offsets, was not compensated for by the migration procedure,

which led to a distortion of the image of the upper boundary (fig. 3).

L] i ;m

i I X

FIG. 3. The image obtained by the method '""CDP stacking, wave migration”

Models 2-3. Closed smooth bodies in a homogeneous volume (planar case). Velogity in
the outer medium: 38 km/sec, velocity within the objects: 2 km/sec in model 2 and 3.5
km/sec in model 3. Respective sizes of the bodies: 60x200 m and 100x150 m.
Observation system: 64 receivers and 64 sources sr‘)aced 12.5 m apart, located on the

line 2z = O.

The computation of the wave field was carried out by the method of boundary integral equa-
tions, with the exception of the direct field due to sources at observation points [12]. The

frequency range of 17 to 100 Hz was represented by 64 values. The image was formed on
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a grid of 128x128 values with step sizes Az = Az = 6.25 m. The reconstruction was car-
ried out in two stages: first the image was constructed using the known velocity in the outer
medium -- 3 km/s. From this image the position of the upper boundary of the objects was
determined, and there was carried out a recomputation of the wavefield on a horizontal line
close to this boundary. After this, using the velocity for the interior of‘ the object, the lower
boundary was imaged. For a more precise reconstruction it is necessary to recompute the
field directly on the chosen boundary of the section. Results of the reconstruction of the
image are given in figs. 4 and 5, where the real positions of the objects are indicated by
dashed lines. We should note that the absence of some of the elements of the boundaries

on the image is caused by the fact that the rays reflected from these boundaries do not

FIG. 4. (a) is a common-shot gather from model 2 (the source is at the 400 meter point).
(b) is the result of imaging the object in model 2.

strike our observation system.
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FIG. 6. Geometry of the three-dimensional model
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Model 4. A specular reflecting plane with a dip of 45° to the vertical, and a small point
scatterer above it. The observation system: on the plane 2z = O are 32 paraliel pro-
files, heading at an angle of 45° to the strike line of the reflecting boundary. Each pro-
file is composed of 32 sources and 32 receivers, with a step size Ax = Axg = 20 m;

the offset between profiles, Ay = 20 m.

The field reflected from the specular boundary was calculated by the method of virtual
sources, while the scattering from the inhomogeneity was represented by the field from a
point-like secondary radiator. The velocity in the medium was 2 km/sec, and the spectrum
of the field was represented by 75 values in the range of 1 to 48 Hz. The geometry of the

model is shown in fig. 6.

The image was formed on a three-dimensional 64x64x64 grid, with step sizes
Az = Ay = Az = 10 m. From the resulting data we selected and imaged sections along vari-
ous planes. In figs. 7-9 are presented the results of imaging along the 3 planes
z,y,z = 300 m, all of which pass through the scattering inclusion. The geometry of all the
images agrees with the original model. Because of the cyclicity of the convolution, which
was carried out by means of the discrete Fourier transform, we can see the effect of the
cyclicity of the image on those parts of the reflecting plane that extend beyond the limits of
the observation system. This effect is easily removed by padding the original matrix with a
field of zeroes, but doing this leads to an increase in the time of convolution which is signifi-

cant in the three-dimensional case.

For a comparison to the full system of observation we chose a profile that lay over the
point scatterer, and the data from this profile was processed using the two-dimensional
variant of the algorithm. The result of this processing is shown in fig. 10. The image of the
reflecting plane appears to be displaced and rotated relative to its actual position, which is
indicate by the dotted line. Besides this, the image of the scatterer is distorted, and its
relative intensity is noticeably lower, in comparison with the three-dimensional analog of the
image. We should also note a numerical experiment that was carried out with the goal of
examining the effect of the stationary phase approximations. We compared the results of
processing data from an areal model using the corresponding algorithms, with the results
from using its two-dimensional point source analog. The comparison showed that the distor-
tion apparent in the second case was insignificant and had a low-frequency character, that
is, it was determined by that part of the temporal spectrum of the field for which using the

~

stationary phase method is incorrect.

Although the numerical experiments were carried out using data from observation sys-
tems that had fixed recording stations for all the shot locations, the algorithms can, without

fundamental changes, be applied to the case usually found in practice for systems of multi-
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FIG. 7. Vertical section along the plane ¥y = 300 m.
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FiG. 8. Vertical section along the plane x = 300 m.
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FIG. 9. Horizontal section along the plane 2z = 300 m.

obtained using a single profile
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fold coverage.

In conclusion | would like to thank my co-workers at the Computing Center of the
Siberian Branch of the USSR Academy of Science, V.N. Martynov and V.V. Voronin, who used
the actual programs for the computation of the solution of the forward dynamic wave propa-
gation problem in inhomogeneous media, and corresponding-member of the Academy A.S.
Alekseev, to whom | am indebted for his constant attention and participation, which in many

ways led to the realization of this work.
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The first earth colony on Mars has been swept away by an epidemic of Barsoomian flu. The
cause: a native Martian virus not yet isolated.

There is no way to identify a newly infected person until the symptoms appear weeks later.
The flu is highly contagious, but only by direct contact. The virus transfers readily from flesh
to flesh, or from flesh to any object which in turn can contaminate any flesh it touches.

Ms. Hooker, director of the colony, has been seriously injured in a rocket accident. Three
immediate operations are required. The first will be per- formed by Dr. Xenophone, the
second by Dr. Ypsilanti, the third by Dr. Zeno. Any of the surgeons may be infected with Bar-
soomian flu. Ms. Hooker, too, may have caught the disease.

Just before the first operation, it is discovered that the colony's hospital has only two
pairs of sterile surgeon's gloves. No others are obtainable, and there is no time for resteriliz-
ing. Each surgeon must operate with both hands.

" don't see how we can avoid the risk of one of us becoming infected," said Dr. Xenophon
to Dr. Zeno. "When | operate, my hands may contaminate the insides of my gloves. Ms.
Hooker's body may contaminate the outsides. The same thing will happen to gloves worn by
Dr. Ypsilanti. When it's your turn, you'll have to wear gloves that could be contaminated on
both sides.”

"Not so,"” says Dr. Zeno, who had taken a course in topology when he was a young medical
student in Paris. "There's a simple procedure that will eliminate all risk of any of us catching
the flu from one another or from Ms. Hooker."

What does Dr. Zeno have in mind?

HRARHHF R AR AR R
An iron bar, 13 inches long, is marked in four places: 1, 2, 6, and 10 inches from one of the
ends. Of what special use is the bar?

#HAA AR RARARRRAER AR AR ARRARAR AR AR AR RRERRRA R

What is the lowest number whose English name contains the letter 'a'?

HRAR AR HRRR VR R AR BRI R
Dick's age is twice what Tom's was when Dick's was twice what Tom's was when Dick's
was three years more than Tom's was when Dick's was both thrice what it was when Tom
was born and three quarters of Tom's present age. What will Tom's be when Dick's is twice

what Tom's will be when Dick's is the sum of both their present ages?

HRERAA R RARERRAR R AR AR RRRARRF AR AR RS
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