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Remarks on two-pass 3-D migration error

Stewart A. Levin

Introduction

Recently the author has studied errors of a two-pass method for migrating three dimen-
sional stacked data that cascades two dimensional migrations in orthogonal directions [Gib-
son, Larner, and Levin (1983), Jakubowicz and Levin (1983)]. For constant velocity migra-
tion errors arise only from approximations to the complete migration operator provided by the
scalar wave equation. When the 90° Stolt migration algorithm is used the results match full
3-D Stolt migration exactly. For nonconstant velocity media the method is necessarily
approximate because its 2-D migration velocities are tied to a local, partially migrated posi-
tion rather than the final (out of plane) position that is the apex of a full 3-D migration
hyperboloid. For a reasonably large range of dips and velocity functions, numerical simulation
showed errors of the same order as that which normally arises from velocity uncertainty. In
the latter half of this note we will argue that these errors are virtually identical to those

incurred by using Stolt's trace stretching trick for handling nonconstant velocity.

Jakubowicz and Levin (1983) give an example comparing the errors of continuous 15°
full versus two-pass constant velocity migration. Mention is also made of discrete imple-
mentation errors but no example is shown. The next section will briefly discuss how to

measure this error and supply some examples.

Discrete two-pass 15° error

If we measure all times and distances as multiples of the basic sampling intervals At
and Ax, the phase shift k., for 156° time domain migration as a function of normalized fre-
quency w, spatial wavenumber k,; and downward extrar;olation traveltime step AT is given
implicitly by the all pass transfer function

147 =) y(kz)e™ +1

T T e 1 (k) e
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where, for the explicit algorithm, -y takes the form
2AVR(cos k,—1) -1 (2a)
while for the implicit algorithm the expression is

(2AV?-28)(cos k, —1) — 1

(24V2+28)(cos ky —1) + 1 (2b)

Here A is A7/32, and g is typically 1/6.

Applying this to two-pass migration, where we do an x-migration followed by a y-

migration, k. is given by

; o ket +1
ev.A'r(k-r @) _ _ 7(1_“1’/)2 , (3a)
e’ + y(ky)
where
pidt(v' -0) — _ ylkz)e*™ + 1 i (3b)

e*® + y(k;)

To compute k. for one-pass discrete 3-D migration, unlike the continuous case dis-
cussed by Brown (1983), it makes a difference whether or not the extrapolation operator is
split. It is customary to split an extrapolation operator into two orthogonal parts - each
being the operator used for two dimensional migration. We will use this scheme in our exam-
ples. (This is not the only splitting possible. Four second order operators oriented at 45°
angles can been used for greater accuracy.) With this assumption, the transfer function for
one-step migration is

RIS vk )e® + 1 y(ky)e + 1

= - : - . (4)
e' + y(k,) e'® + y(k,)

To now compare one- and two-pass 15° migration error we use formulas (3) and (4) to com-

pute relative phase error

k,

wecos B8 -1 (5)

(For a given subsurface dip &, the phase shift k.. of 80° migration is wcos 4.} 1t is meaning-
ful to plot this as a function of dip angle & and azimuth o’because

Vi,
2w

= gos o sin @ (6a)

and
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Vi,
20

= sing sin@ . (6b)

These formulas were used to generate the sample data contoured in Figures 1 and 2. Figure
1 shows phase error plots that are virtually identical, typical behavior in all the explicit 15°
algorithm test made. Both show a slight increase in accuracy around 45° azimuth, just as
the two-pass method did in the continuous case and for essentially the same reason. Figure
2 shows the same test switching to the implicit 15° algorithm. They too are representative
of most other implicit phase error plots we generated. Here the phase error, unlike the con-
tinuous case, goes negative in places. Furthermore we see the two-pass error is not
guaranteed to be minimized around 45° azimuth but may even be maximized over some range

of dip.
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FIG. 1. Contour plot of relative phase error for (a) two-pass 15° explicit 3-D migration and
(b) full 156° explicit split step 3-D migration. Velocity here is 4000 m/sec and frequency 20
Hz at a 4 msec sampling rate. A downward continuation step size of 40 msec and a trace
spacing of 50 m are also assumed. Contour interval is 2% % with zero error along the zero dip
axis.
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FIG. 2. Contour plot of relative phase error for the 15° implicit algorithm (with 8 = 1/8) using
the same parameters as for Figure 1. The hatched areas are where the phase error has
gone slightly negative.

Industrial strength Stolt migration

If Stolt migration is the method of preference then, as Gibson, et. al. point out, migrating
the 3-D volume of data in one pass requires half the stretching and Fourier transforming
operations of two-pass Stolt migration. This is no surpri§é as the proof of equivalence of
two-pass to full 3-D constant velocity migration is simplicity itself; the first migration down-

shifts the frequency w to & given by

[ vk ]2 J1r2
& = |o? - z_ || (7)
| 2 |
and scales by &/w. The second migration downshifts the frequency & to the final value k.,
given by N
[ [ vk ]2 ]1/2
k. = 8% - vi (8)
| L 2 ]|

and scales again by k.,/®. Substituting (7) into (8) gives
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z_['uky ]2]1/2

I (9)

with scale factor k./& x &/w = k./w, exactly the frequency downshift and scale factor

used in full 3-D Stolt migration.

Because the real world is not constant velocity, Stolt (1978) suggested that trace
stretching be used before migration to make the section look more like a constant velocity

section. More specifically, Stolt's stretching function f is designed to make the hyperbola

2
tz - ,rz + 42; (1 0)
v
look like a constant velocity hyperbola
o 2 4x?
Ft) = () + 2 (11)
/]
for small offset x.
Dividing (11) by (10) gives
2(4Y _ F2 vl
t—T v®
and taking the small offset limit ¢t » 7 gives the differential equation
d oo 1 _ v
e | ('r)J = 27 " (13)

for the Stolt stretch.

After the stretching is done, migration proceeds as in the constant velocity case with

the addition of one extra parameter s in the frequency mapping

vk ]2]1/2
1 | (14)
2 ]|

b= (-Tyos Lleros
S Sl

and final trace unstretching. The infamous constant s is often set to % for migration of field
data and 1 for constant velocity synthetics. We note, however, that independent of s, k, =

¢t for k = 0 and so flat dips are left reassuringly unmoved.

The case s = 1, however, gives an interesting, albe@t incomplete, insight into the perfor-
mance of Stolt stretch for nonconstant velocity. In tl:iis case, the two-pass method with
trace stretching does give identical results to the one pass method with trace stretching.
We know, however, that two-pass migration will differ from full 3-D migration for nonconstant

velocity. Thus, for three dimensional datasets, the inaccuracies of Stolt stretch are virtually
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the same as those arising in two pass migration.
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