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Proof that Every CPR is an Impedance

an F. Claerbout

If you look in FGDP or old versions of Lecture Notes Section 4.6, you will see that an
impedance is defined to be a minimum phase filter (has a causal inverse). Instead, that
should have been deduced. It should be deduced before Muir's rule number 3, that the sum

of impedances is an impedance. Otherwise proof of rule 3 is either faked or very hard.

The word filter refers to a Fourier transform pair. Let f; denote the time domain
representation of the filter, and let F(w) denote its Fourier representation. Two filters are
inverse to one another if their Fourier transforms are inverse to one another. A filter is
causal if f, vanishes before t=0. A filter is said to be PR if the real part of its Fourier
transform is positive. What should have been proven, and will be proven now is that if a

filter is both causal and PR (called CPR) then its inverse filter is causal.

Impedance Defined From Reflectance

The size of the class of filters called impedances will be seen to be large because
they are derived by transformation from an easily specified family of filters called reflec-
tances, say c¢; and its Fourier transform C(w). To be a reflectance, the time function must
be strictly causal and the frequency function must be strictly less than unity. By strictly
causal it is meant that the time function vanishes both at zero time and before. For exam-
ple, take —1 < p < +1 and the reflectance c; to be animpulse of size p after a time At.

The Fourier transform is

C = pZ - pe—imAt

~

An impedance has been defined to be a causal filter with a causal inverse and with a
Fourier transform whose real part is positive. From any reflectance C, it will be shown that

the expression
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generates an impedance. Because of the assumption that C has magnitude strictly less
than unity, C C < 1, there is never any problem with the denominator. It always has a
numerator representation as a convergent series in positive powers of . Since the reflec-
tance C is causal, so are the powers which represent multiple bounces. This constructs a
causal representation for K. The inverse of R is found by simply changing the sign of (.
it too is always convergent and causal for the same reason. The last part of the proof that
the expression R = (1-C)/(1+C) always produces impedances from reflectances is to
show that K has a real part that is positive. Multiply top and bottom by the complex con-

jugate.

M 2
c-00+0) 2
positive

Re X = R

pe (1= CC) + imaginary

Re # = =
posilive

The expression for R(C) is easily back solved for C(R), but the converse theorem,
that every K generates an reflectance, is harder to show. But we intend to show it, along
with a deeper theorem. A filter is said to be Positive Real (PR) if the real part of its Fourier
transform is positive. A fifter that is both causal and PR is called CPR. The deeper theorem
is that every CPR has an inverse, hence is an impedance. This will be proven by showing
that every CPR, say 13, canAbe used to construct a reflectance E‘ which by being a reflec-

tance implies that the CPR X is an impedance K. The back solving gives

c =

Proof requires two things be shown. First, the magnitude of E‘ must be less than unity.

To show this, form the magnitude of the denominator and subtract that of the numerator.
The result is four times the real part of 1; which is positive. Second, E‘ must be proven
causal. This is much harder to prove. The denominator 1 + }$ can be expanded into a sum
of positive powers of R hence of positive powers the delay operator. But the convergence

of the series is not assured because nothing requires K to be less than unity.

Before continuing with this proof, an intermediate. theorem is needed, namely that a

scaled impedance is another impedance.
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A Scaled Impedance is an Impedance

Let a>0 be a real, positive scaling constant. It will be shown that A" =a R is
another impedance. The method is by constructing a reflectance (” which will produce £°.
An implicit definition of C~ is:

1-C 1-C
1+C 1+C

Cross multiply
1-CN0+0) = a(1 =01+ C)
Bring terms dependingon C° to the right.
(1-a)+ C(1+a) = [(x+1)+ C(A-a)] C’
Define

p = 1:2 where -1<p <1

Solving for C’ gives an explicit definition

c = C +p
1+pC

For C’ to be a reflectance, two things must be verified. It must be causal, and it must have
a spectrum strictly less than unity. The causality requires that the denominator be expand-
able into a convergent numerator, and it is. For unit boundedness, observe that the magni-

tude of the denominator minus that of the numerator is positive.

?
(1 +p0)A+p0) = (C+p)(C+p) > O
(1-CcO0 -p) > 0

Since (’ is proven to be a reflectance, the associated R’=oaX is proven to be an

impedance.

Every Causal-Positive-Real (CPR) is an Impedance

Now the proof can be completed that every causal; PR filter has a causal inverse. The

unresolved question was whether

(B}
1"
b | b
+ |11
T >
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can be proven causal. Consider first another function.

1 - s)';

1+ek
Choose ¢ small enough that for all w, sl); | <1. This ensures a convergent expansion for
the denominator in terms of positive powers of &, which contains only positive powers in
the delay operator. Thus B is a reflectance and its corresponding impedance is s}?’. But
an impedancei can always be scaled by a positive number. Taking the number to be 1/¢&

shows that K is an impedance. This completes the proof that every CPR is an impedance.

Impedances arise more easily than we thought. It is not necessary to have a reflec-
tance C toinsert into the relation ¥ = (1-C)/(1+C). We only need to have a CPR. They
can be constructed in many ways. The sum of two CPRs is a CPR because summing does not
destroy causality, nor does it destroy positivity. It was also shown that CPRs are
impedances, so they are always invertable and CPRs being impedances can be scaled by a
positive constant. These three ways of combining CPRs to get other CPRs are called Muir's

rules.

Reflectance of a Sum of Impedances

Before | had proven that every CPR is an impedance, it was really tough to prove that
impedances sum to other impedances. But the intermediate stages of the proof are interest-

ing, so it is preserved below.

1"'C1 1"C2 1'—0102
Ri+ Ry = ~——L 4 ~~%=
1+ C 1+ Cy 1+C, + Co + C1 L2
Cy+Cat2C,Co
2+C,+Ca
+ =
Fit Ry ] Ci1+C2+2C,C,
2+ C+Cy

What must be proven is that C’is a reflectance, where

C1+Ce+2CCe  C1(1+C2) + Co(1+C)

¢ 2+C,+C, B (1+C) + (1+C,)

To reduce algebraic verbosity use the temporary substitltions a=1+C, and b=1+(,.

c = (a—-1)b +(b—-1)a - —(a+b) + 2ab
a+b ac+b

Form the magnitude of the denominator and subtract that of the numerator.
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(a+b)(a@+b) —[(a+b)@+b) — 2ab(@+b) ~ 2(a+b)ab + 4abab] ; 0
ab(@+b) + (a+b)ab — 2abab ; 0

?
a@ (b + b-bb) + bb(a +@—ad@) > O

The two terms are symmetric in o and b so it suffices to examine either one.

?
a+d—-—aa > O

1-0)+(1-0) - 1-D)(1-¢) > 0
1 -CcC > O

The result that two impedances can be added to get another impedances has been shown

by constructing the required reflectance.
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Founded 1885
Opened 1891

PRESIDENTS

David Starr Jordan, 1891-1913
John Casper Branner, 1913-15
Ray Lyman Wilbur, 1916-43
Donald B. Tresidder, 1943-48
J. E. Wallace Sterling, 1949-68
Kenneth S. Pitzer, 1968-70
Richard W. Lyman, 1970-80
Donald Kennedy, 1980-

SCHOOLS & INSTITUTES*

Law—1908

Medicine—1909
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School of Mineral Sciences, established 1947,

Students

ADMISSIONS

Freshman

Men Women Total
Applicants 8,292 5,737 14,029
Enrollees 870 679 1,549
Transfers (Autumn quarter only)
Applicants 1,153 802 1,955
Enrollees 100 66 166

Deadline for completed applications for
freshman admission: January 1, 1982.

Deadline for completed applications for
autumn quarter transfer admission: April 1,
1982.

Group Information Sessions: Monday
through Friday 9:30, 3:15; Saturday 9:30
(October through December).

For additional information regarding
application procedure, admission require-
ments, etc., write Fred A. Hargadon, Dean
of Admissions, Stanford, California 94305.

GRADUATE & PROFESSIONAL PROGRAMS

Applied  Enrolled

Business 5,454 337
Earth Sciences 268 58
Education 411 110
Engineering 2,658 665
Humanities & Sciences 3,676 441
Law 4,011 176

Medicine 6,206 132
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4.5 Stretching Tricks

Fourier aﬁalysis is generally inappropriate for time or space variable operations. This is
unfortunate because other methods are often more costly than methods based on the fast
Fourier transform program. Stretching tricks often enable Fourier methods to succeed where
they otherwise would fail. The most obvious application (rare in practice) is to sample the
time axis of the seismograms more coarsely at late times. This is reasonable because the
earth @ has dissipated late high-frequencies. And it saves computer memory. After resam-
pling, the spectrum of the data is more time invariant, so time invariant filters are more
appropriate. Anyway, time invariant filters after resampling may be applied with Fourier
transforms, whereas before resampling, time variable filters could not be applied with Fourier

transforms.

Stolt Stretch

A more important application of time axis stretching was devised by Bob Stolt shortly
after he developed his Fourier transform migration method. The great strength and the great
weakness of the Stolt migration method is that it uses Fourier transformation over depth.
This is a strength because it makes his method much faster than all other methods. And it is
a weakness because it requires a velocity which is a constant function of depth. The earth
velocity typically ranges over a factor of two within the seismic section, and the effect of
velocity on migration tends to go as its square. To ameliorate this difficulty, Stolt suggested
stretching the time axis to make the data look more as though it had come from a constant

velocity earth. Stolt proposed the stretching function

¢ 172
2
(t) = | S [t vdys(t)at (1a)
Vg o
where

t <
vus(t) = - [v¥t) at (1b)
[¢]

At late times, which are associated with high velocities, Stolt's stretch implies that T grows

faster than f. The T-axis will be uniformly sampled to allow the fast Fourier transform.
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Thus at late time the samples are increasingly dense on the { -axis. This is the opposite of

what earth @ and the sampling theorem suggest, but most people consider this a fair price.

The most straightforward derivation of (1) is based on the idea of matching the curva-
ture of ideal hyperbola tops to the curvature on the stretched data. The equation of an

ideal hyperbola in (z,7)-space is
v = 2P +2? (2)
Simple differentiation shows that the curvature at the hyperbola top is

d?r
dzz

1 (3)
z =0 T'Ug

It may be shown that in a stratified medium the same relation holds except that the velocity

Is replaced by the RMS velocity.

d?t
dxa

1

z=0 - t 'UEHS (4)

We seek a stretched time 7(f) on the stratified medium that effectively replaces equation
(4) with equation (3). We would like to match the z-dependent curves for all z. But that
would overdetermine the problem. Instead we could just match the derivatives at the hyper-
bola top, i.e. the second derivative of T[f(x)] with respect to z at z=0. With the sub-
stitutions (3) and (4), this gives an expression for td7t/dl which after integrating and

square root yields (1).

A different derivation of the stretch will give a more accurate result at steeper angles.
Instead of matching hyperbola curvatures at the tops, the hyperbola slopes are matched at
some distance out on the flank. It is the flanks of the hyperbola which actually migrate, not
the tops, so this result will be more accurate. Algebraicaily, it is also an easier derivation,
because only first derivatives are needed. Differentiating equation (2) with respect to =z

gives

dT z
= = = 5
- — (5)

There is an analogous expression in stratified media. To obtain it, solve z = f'u sin 8dt =

p [v?dt for p=dt/dz getting 3

dt _ T
== —F— (6)

t
S vAp,t) dt
0
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Expressions (5) and (8) will play the same role as (3) and (4), bu;c (5) and (6) are valid

everywhere, not just at the hyperbola top. Differentiating 7(f) gives

dr _ dr di
dzr =~ dt dz e
Inserting (86) and (6) into (7) gives
r _ drt x
Tug  dt ¢ (8)
0 2
f'u (p,t) dt
()
[, ]
Tdr = l~—2—f v¥(p,t') dt’ Jdt (9)
Vg 0

Integrating (9) gives 7%/ 2 on the left. Then taking the square root gives (1a) with a new

definition for RMS velocity.
1 ¢
vhus(t) = [ vP(p.t)dt (1¢)
(]

The thing which is new is the presence of the Snell parameter p. In a stratified
medium characterized by some velocity, say wv’(z), the velocity v(p,t) is defined for the
tip of the ray that left the surface at an angle with a stepout p. In practice, what value of
p should be used? The best procedure is to look at the data and measure the p =dt/dz
of those events which you wish to migrate well. A default value is p = 2(sin30°)/ (2.5

km/sec) = .4 millisec/meter. The factor of 2 is from the exploding-reflector model.

Gazdag's V(x) Method

The phase-shift method of migration is attractive because it allows for arbitrary depth
variation in velocity and arbitrary angles of propagation up to 80. Unfortunately lateral vari-
ation in velocity is not permitted because of the Fourier transformation over the r-axis. To
ameliorate this difficulty, Jeno Gazdag proposed an interpolation method. Recall from Sec-
tion 1.8 that the phase-shift method 2-D Fourier transforms the data p(z,t) to P(k,,w).
Then P(k,,w) is downward continued in steps of depth by multiplication with
exp[ik,(w,k;) Az]. Gazdag proposes several reference velocities, say v, vy, v3, and v,.
He downward continues one depth step with each of tht.;. velocities, obtaining several refer-
ence copies of the downward continued data, say P;, P,, Pz, and P,. Then each of the F;
is inverse Fourier transformed over k, to p;(z,w). Then at each z, the reference waves

of nearest velocity are interpolated to give a final value, say p(xz,0) which is
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retransformed to P(k_,w) ready for another step. This appears to bé an inefficient method,
duplicating the usual migration computation for each velocity. Surprisingly, the method

seems to be successful, perhaps because of the peculiar nature of computation using an

array processor.
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