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Sources for Finite Difference Forward Modeling

Peter Mora

Abstract

Wave propagation simulations using numerical methods require some source condition. A
method using Hankel transforms for the generation of "point" sources on finite difference
meshes is presented. These point sources may be activated at any time and superimposed
into complex source arrays giving some of the flexibility required for simulations of real

situations

Introduction

Numerical simulations of wave propagation using finite differences require some initial or
source conditions. The most obvious way is to begin with a displacement field of zero and to
apply somé excitation force which corresponds to the seismic source. The excitation force
is time dependent and is turned on at some time t=0. Although it may be easy to do in a con-
tinuum, special care must be taken in the discrete case to avoid numerical errors. An easier
method is to solve the wave equation analytically at some time t > O and superimpose this
solution on the finite difference mesh, thereafter allowing the numerical scheme to take over
the wave propagation. This is most easily done by convolving some given source with a

wavefront impulse response function.

If the region surrounding the source is homogeneous the wavefront is a circle, in 2D, of
known amplitude. Usually the source waveform is known in 1D as a function of time in the far
field so the circular wavefront should be of sufficiently large radius to satisfy this criterion
for the given source waveform. However, such a large spurce region is wasteful in terms of
model space and therefore overall computation time. It |s possible to propagate such circular
wavefronts backward in time to the source time thereby decreasing the size of the source

zone to the size of the waveform. A fast way to do this is by phase shift methods in the
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frequency domain. Because of the circular symmetry of the wavefront, 2D Fourier transform-

ing is identical with Hankel transformation.

Modeling Scheme

Although the finite difference scheme is independent of the source generation | will

briefly outline the technique for completeness. The acoustic wave equation is given by
BuW = KLW = vRpLW (1)

W denotes the pressure wavefield, K denotes the bulk modulus , v is velocity, p is density

and [, is a differential operator defined below.
1 1
L =6z'p—33+6,,;'62 = Ly + L, (2)

The values of [, W and I, W are computed using Fourier derivatives so the spatial deriva-
tives are exact to the Nyquist spatial frequencies. Specifically these values are computed

using
LW = F"liikuFi;J—F“liikuFEWM; L u==z,2 (3)

Finite differencing over time using central differences gives the following explicit formula for

the wavefield at a future time step in terms of the previous two time levels.
WERY = AtRuRp(LW):, + 2wk, — Wi}

Stability is analyzed by substituting a complex exponential trial solution exp[i(k, +k, —wt)]

into equation (1).

eiwht | —wht _ o -k,
= (k2 + k)

At?

- Z—i—z—(cos(wAt) —1) = —uRE?

- sinf(wAt/2) = (vkAt)R/ 2

For real w, that is there is no real exponential part to the solution, it is required that
sin(wAt/2)=<1 so the stability criterion is vAt/Ah <V2/7. Here the value

Ah = min(Az,Az) so the maximum Nyquist wavenumber & is 1/ Ah.
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Source generation

Effective point sources are generated by initializing # for two time steps atf = —-Af
and { = O in such a way as to make a compact source region which will generate the speci-
fied far field source s(f). The wavefield is initialized at some time £, > 7 where T is the

length of the source wavelet in time units. This is done by applying equation (4).

Wez = s(r/u—tg) = s(VM(z—z¢)? + (2-20)%/ v + tg) (4)

The source has been centered at (z,2g). The wavefield is Fourier transformed and a phase
shift is applied to "explode" the circular wavefront into an inward and outward propagating
components. The method is demonstrated using the one dimensional example of Figure 1 and

equation (5).

i, X ik, X

Fs(z+X)+8(z—X)} = e 2" +e *° = 2cos(k, X)F{6(x)} (5)

s(x) S (k) S{k)cos (kX) ~ F{S(klcos (kX)>
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FIG. 1. A one dimensional example illustrating how source explosion corresponds to multipli-
cation of the Fourier transform by a cosine.

From the one dimensional example it is clear that in 2D the appropriate phase shift is
obtained by replacing z like terms with r like terms. Therefore, the phase shifted wavefield

is given by

We x, = constant cos(kR)F{W, ;3

The value R is simply the required propagation radius and is set to v(f, — At) and vty for
generation of the wavefield at t = —Af and { = O respectively and k is the wavenumber
given by \/kf+l€f . The resultant wavefield has an unwanted circular wavefront at radius

R+wviy and this can be removed by multiplying by some circular clipping function such as a
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n(r / (2uty)) or some smoother function. Figures 2(a) through 2(f) illustrate each step of

the method for a second derivative Gaussian source.
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FIG. 2. The steps involved to generate a compact source. (a) Generation of a circular wave-
front with the appropriate waveform. (b) Fourier transformation. (c¢) Cosine multiplication.
(d) Inverse transformation. (e) Removal of the unwanted part. (f) Fourier transformation to
show the resulting source spectrum.

Discussion

A quicker version of the above method is to simply retate the one dimensional Fourier
transformed source s (w) about the origin of two dimensional (k,,k,) plane to generate a cir-
cularly symmetric source at £ = 0. The { = —At wavefield would be obtained by rotating
e™A ¢ (w) about the origin in a similar fashion. The only drawback here is that there may be
interpolation artifacts if one interpolates from the sampled s(w) function to the (k,,k.)
plane unless care is taken in the interpolation and in specifying a well behaved smooth
s(w). Of course this would not be a problem if s(w) is known analytically. In general how-

ever, | expect the original method outlined to be the more robust of the two.

N
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Examples

Two examples are shown in Figures 3 and 4 to demonstrate the flexibility of the
method. Both illustrations contain pictures of the wavefield as time evolves for some source
distribution. Figure 3 shows how a wavefront evolves resulting from three nearby point
sources which are activated simultaneously. Figure 4 is an example of a line source of lim-
ited extent. Notice the edge effects. In both these examples | used a first derivative Gaus-
sian for the source s(f). Observe the waveform is no longer a first derivative Gaussian in
linear parts of the wavefront in Figure 4. This is related to superposition effects and can be

considered a result of the one dimensionality of the linear source.
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FIG. 3. Evolution of a wavefield resulting from three nearﬁy first derivative Gaussian point
sources activated simultaneously.
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FIG. 4. Evolution of a wavefield resulting from a linear source of limited extent. The linear
source is made of several aligned first derivative Gaussian point sources.

Conclusions

The Hankel transform technique for generating point sources on finite difference
meshes is a flexible fast way to introduce some arbitrary source distribution in some limited

homogeneous portion of the model space.
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