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Residual migration

Daniel Rathman, Stewart Levin, and Fabio Rocca

Abstract

Rocca and Salvador (1982) showed that migration velocity can be modified by applying
a residual migration to previously migrated data, rather than having to remigrate the original
data with the corrected velocity field. The effective velocity entering this residual pro-
cessing is usually small compared to the original migration velocity. This decreases compu-
tational cost compared to a full migration, and allows the initial migration to be done with a

less accurate but faster algorithm than would otherwise be required.

The possible advantages are many. The overall cost of migration may be reduced, a
consideration especially important when migrating 3-D datasets. Migration quality may also
be improved, both from the corrected location of mispositioned reflectors and the freedom to
initially migrate with a high dip, low dispersion algorithm such as Stolt migration. Interactive

residual sharpening of the migrated image also becomes feasible.

The theoretical and practical limitations of residual migration are discussed. The
related reductions of effective dip, velocity, and frequency. after initial migration are quanti-
fied. We determine how accurate the initial migration velocity needs to be to justify use of
this approach. Aliasing and numerical artifacts are also analyzed. Field data examples using
Kirchhoff summation migration are shown to illustrate the features and drawbacks of the

method.

Introduction

Residual migration is based upon the observation, made by Rocca and Salvador (1982)
and others (Larner, private communication), that migration with velocity v, followed by
migration with velocity v, is equivalent to migration with a combined velocity v =

\/WT_'U?. By viewing v as the proper migration velocity and v,, as the migration velocity
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actually used, Rocca and Salvador solved for the residual migration velocity v, =

W——_ﬁ needed to effect correct migration.

This ability to correct for improper migration velocity has two important consequences.
First, because the residual velocity is generally small, remigration with an adjusted velocity
function can be done at a fraction of the cost of a full migration, making, for example,
interactive sharpening and focusing of the migrated image feasible. Second, it provides a
means of correcting for the inherent constant velocity nature of Stolt migration, permitting
wider use of its steep dip accuracy and low dispersion, possibly at less total cost than full
migration with more flexible finite difference or Kirchhoff methods. The savings gained by
residual migration would be most substantial in 3-D processing: 3-D migration could first be

performed with a Stolt algorithm, followed by residual corrections.

To examine the limitations of a residual migration scheme, we look at how effective dip
varies with velocity error and how the frequency downshift from an initial migration affects
the cost and quality of a subsequent migration. We see that dip and frequency downshift
control the critical choices of finite difference depth step or Kirchhoff aperture sampling for
the residual migration. In the case of residual Kirchhoff migration, we show that the prob-
lems of aliasing and undersampling of the residual summation operator are no worse than we
are accustomed to in ordinary Kirchhoff migration, despite the steep (low velocity) flanks of

diffraction hyperbolas. Finally, a field data example is presented.

Geometric view of residual migration

The process of migration can be thought of as mapping apparent dip :—i to a true dip

dr . .

_ lat

- via the relations \;
sinf = 2 - (1)
tan G = % 3—; (1b)

which yield, when @ is eliminated, the classic formula
2 1-1/2
dt [ dt ]

dr _ dt N
dx [1 l2 dm.‘JJl 2

dx

expressing time dip on the migrated section in terms of the time dip on the unmigrated data.
If the migrated section described by equation (2) is then input to another migration using

velocity v’, the formula now yields the new migrated slope
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which is (2) with v replaced by Vu? + v %, exactly as predicted by Rocca and Salvador.

Suppose now that the initial migration velocity v,, is in error and that the true velocity
is v. Then solving for v’ demonstrates that to transform this improperly migrated data to

correctly migrated data requires migration with a new residual velocity

[ b P12
'ue='u[1—[1'}" J when v, <v (4a)
or modeling (i.e., unmigrating) with
[ (W 1P Jis2
m
v£=v[[~y—] -—1] when v, >v . (4b)

A more general derivation of the residual velocity v is provided in the Appendix, where
we show that if v is a depth-variable function v(z), then a residual velocity, v,(z), also
varying with depth, will correct for a preliminary migration performed with constant velocity.
This statement is wave-theoretically precise: low velocity diffractions present after migra-
tion with v, < v are still diffractions in the ordinary sense. The amplitude and phase varia-
tions expected for pre-migration diffractions still exist. For the case v,, > v, we would
observe elliptical "smiles." Residual migration would then be performed by modeling, still a

wave-theoretically valid procedure.

For the case of constant velocity, it is interesting to note that one derivation of the
residual migration velocity closely parallels the proof that 3-D migration can be split into
two, perpendicular passes of 2-D migration (Jakubowicz and Levin, 1983). Indeed, residual

migration can be derived as a special case by the following argument.

Suppose seismic data are collected over a two dimensional subsurface. If Polz,t)
denotes the stacked section that would be obtained along a dip line, we would get Pz,y,t)
= Po(zcosy + ysing,t) if the survey were shot along an azimuth ¢, or, expressed dif-
ferently, we would see the same traces spaced farther apart. (On a strike line, p = 90°,
they would be infinitely far apart.) Two-pass migration\ with velocity v is equivalent to
migrating Pgy(z,t) twice; first with velocity vcosg followed by velocity vsing . Indeed, in
the frequency-wavenumber domain, a component sinusoid with frequency « and wavenumber

k has projections k, = kcosy and k, = ksing in the inline and crossline directions
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respectively. Migrating in the inline direction replaces w by

& = [wz —(}é'ulcz)Z]Vz

, (5)

the same as migrating with velocity vcosyp . Remigrating in the crossline direction produces
2 2172

k-r = [ﬁ —(%’Uky)] ’ (6)

the same as remigrating with velocity vsing .

Thus we may interpret (under)migration with the wrong velocity as equivalent to migrat-
ing, using the correct velocity, data from lines at some azimuth away from the dip direction.

Residual migration completes the job by performing the missing crossline migration.

This geometric visualization is important - no longer do we need to work within the
uncharted territory of velocities outside the normal range used in migration. We may,
instead, view residual migration as migration with a stretched spatial axis and our original
velocity. Then almost all of our experience and intuition about migration, both its strengths

and its limitations, can be safely brought to bear on this problem.

Reduction of effective dip

A preliminary migration changes the effective velocity of the data, which in turn alters
the apparent dip which remains to be migrated. The range of dip which can be correctly
migrated depends on the particular algorithm chosen. In Kirchhoff migration, for example, the
lateral extent (aperture width) of the summation operator determines the maximum dip
migrated. Alternatively, finite difference algorithms are designed to be accurate within a
specific range of dip, usually 15 or 45 degrees. Generally, the higher the dip, the more
expensive the algorithm. Since one goal of residual migraiion is to reduce the expense of
migration by doing most of the work with a preliminary, rapid Stolt migration, it is beneficial to
know when the effective residual dip is smail enough to be properly handled by a low order

residual migration aigorithm.

After initial migration with velocity v,,, the apparent dip input to a residual migration can

be determined by combining in equation (2) with equations (1a,b). The effective resi-

%

dual dip B, is then given by

o T
m] } Uy <V (7a)
v

[
tan g, = tan @ [ 1 —[
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FiG. 1. Contours of residual dip as a function of initial migration velocity accuracy and true
dip. v, <wv on the left, and v,, > v on the right. Contours range from 5° to 85°, left to
right, on both plots. For example, 30° dip is reduced to 15° when initially migrated at 90%
of the proper velocity. Notice also the large empty space in the second figure where data is
treated as evanescent energy in the initial overmigration.

2 ]}ﬁ

v
—i}— - 1] Up >V . (7b)

[
sing, = tan@ l

Both cases are contoured in Figure 1. From this pair of formulas we can bracket the range of

initial migration velocities that reduce the effective dip by solving for §, = & to get

0 < v, < vV1+cos?f . (8)

N

This agrees with common wisdom: undermigration still moves events closer to where they
should migrate, but overmigration can be worse than no migration at all. If v,, is substan-
tially greater than v, we not only risk increasing the remaining dip to be migrated, but much

data may be lost due to its treatment as evanescent energy. Figure 1 tell us even more: our
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first migration velocity needs to be within 10% of the correct velocity to yield any signifi-

cant decrease in dip.

Finite difference residual migration

Reduced velocity and decreased dip are not the only benefits gained from a preliminary
migration. In addition, recall that migration decreases the frequency of dipping beds accord-

ing to the formula
m = wcos@ . (9

This frequency downshift also provides a savings for residual migration.

Finite difference migration consists of extrapolating the unmigrated stacked section
downward into the earth to image the reflection structure of the subsurface. The actual
imaging is done by concatenating small strips of successively deepened time sections. Sav-
ings in migration cost are gained by increasing the width of these strips and taking the larg-
est extrapolation steps commensurate with numerical accuracy. Accuracy is essentially
controlled by making the step size some appropriately small fraction of the wavelength of
variation in the direction of extrapolation. This wavelength depends, in turn, on the dip and

frequency of the data to be extrapolated.

Suppose that we have a plane dipping event with subsurface dip @ and frequency w.
Then, in the retarded coordinate frame in which we extrapolate, the frequency of variation in

migrated traveltime T is given by

k; =wcosf - w , (10a)
or, in the case of modeling,

w =k,secf — k, . (10b)

Thus there is no variation for flat reflectors, but the variation does increase with dip, and in
(10a) is equal to the input frequency at 90°. The wavelength is, of course, inversely pro-
portional to frequency. After preliminary migration we have seen that both the effective
frequency and dip in equation (9) will change. Defining g, the ratio of the cosine of the

apparent dip after the first migration to the cosine of the true dip, by

Z] 1/2

L sinQ} J , (11)

v
1 —

Bcos@B =

v

the new values for frequency and dip, derived from equations (7) and (9), are
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w, = wpcosf Uy < U ~ (12a)

k, = wfcosb U > U (12b)
and

cos@, = g1 w, <wv (13a)

sec 6, = gl v, >v . (13b)

The frequency of variation in the retarded coordinate frame is thus computed to be

k., = wecos8(1-8) v, <wv (14a)

e wecos8(1—-8) v, >v . (14b)

Figure 2 compares this with the unmigrated k7 of equation (8) and shows a much less bleak
picture than our plots of effective dip. We now find that even as much as a 30% velocity
error will still permit double the step size needed for unmigrated data. This approximately
halves the expense of a finite difference residual migration, making it cost effective when

used with a rapid initial migration algorithm.

Residual migration by Kirchhoff summation

The decrease in effective dip and velocity caused by a preliminary migration are
reflected as a substantial reduction in the aperture needed by a subsequent residual Kirch-
hoff migration. Recall that Kirchhoff migration involves a weighted summation along a hyper-
bolic path. The lateral extent of this summation, the aperture, is adjusted to encompass all

the dip of interest. In general, the aperture half-width L is given by

S

—12i—'r tan @ for migration , (15a)

L

L

32)-1- sin 8 for modeling . {156b)

The substitution of v, for v [from equations (4a,b)] and &, for & [from equations (7a,b)]
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FiG. 2. Change in residual migration extrapolation wavenumber as a function of initial migra-
tion velocity accuracy and true dip. Contours represent the ratio k’T' / k7 , ranging from 5%
to 95%, top to bottom, on the left, and increasing from 5% to infinity, bottom to top, on the
right. For example, at 40° dip, extrapolation wavenumber is decreased fivefold when ini-
tially migrated at 90% of the proper velocity.

vields the required aperture for residual migration,

( 2
v U
—Ttan @1 —[ ] <
> T l v J Um v

Ly = (163
U @ -‘

v
—2—7' tan 6 [ :}n ] -1 Um >V

We see that [, differs from [ by the square of the relative velocity error. The ratio Le/L
is plotted in Figure 3 as a function of wv,, /v; it measures a savings gained by a residual
Kirchhoff migration compared with the same operation on unmigrated data. For example, one

sees that undermigration by 30% reduces the aperture (and the computational work) for a
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residual Kirchhoff migration by approximately half. Comparison of Figures 2 and 3 shows
that the savings accrued by both finite difference and Kirchhoff implementations of residual
migration are quite similar. The Kirchhoff method, however, provides more flexibility in local
enhancement of small portions of previously migrated data, a particularly important con-

sideration in 3-D processing.

e
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Lresid / L

o T d T T T T v T T Y T T T ' T T T T T
0 0.5 | 1.5 =
Vmig / Virue

FIG. 8. Change in aperture width as a function of the accuracy of the initial migration velo-
city. For example, a 10% error in velocity decreases the necessary migration aperture by
about 80%.

Aliasing of the residual Kirchhoff operator

A pervasive problem in Kirchhoff migration is aliasing noise. This commonly occurs when
migrating shallow reflections, because relatively high frequency data and steeply dipping,
low velocity hyperbolic summation paths combine to cause spatial aliasing. The slow veloci-
ties used in residual migration might lead one to expect a more severe aliasing problem; for-

tunately, we now show, this is not the case.
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The Kirchhoff operator in a residual migration follows a summation path described by

{
1/2
2 422
+ = U <V
Ve
= : (7
1/2
2
2z _ 4z Uy > U
'U2 m
£
\

where T is the correct migrated travel time (either the apex of a hyperbola or the base of an
ellipse), and 7, and =z denote time and offset on the residual summation path. At any given

point on the path the slope is given by the derivative,

de _ +4zx

= (18)
dx vé T,

The + refers to those of equation (17). At = = L, , the edge of the aperture defined in

equation (16), we obtain the residual migration operator's maximum slope,

[ de] _ t2tan @
dzx Jz=L€ T Bw

m, = , (19)
with B8 again defined by equation (11). Aliasing occurs if the maximum wavenumber to be
migrated is greater than the Nyquist wavenumber determined by the spatial sampling inter-
val. Wavenumber is the product of frequency and slope, so, for residual migration, the max-

imum wavenumber Ee is given by
Ee = acms ? (20)

where @, represents the highest frequency present after the preliminary migration. For a full
migration, the operator's steepest trajectory is given by the largest slope on the unmigrated
section; thus, from equation (1a),

dt ]l 2sing

= . (21)
v

dx Jz:L

The maximum wavenumber before migration is £k = &m. From (12), &, = BBcosB, and we

find the simple relations
Em = B,m, = (22a)
. - (22b)

Thus the maximum wavenumber to be migrated is no higher for residual migration than it is for
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ordinary, full migration. Although the slope of the Kirchhoff operator is steeper for a residual
migration, the accuracy of the 2-dimensional sampling performed by the residual operator is
effectively the same as that of a full Kirchhoff operator - the frequency downshift resulting
from the first migration counterbalances the increase in slope. This confirms what we
already know from the Stolt mapping of equation (9): accurate migration alters slope, but
leaves wavenumber unchanged. For this reason, aliasing is no more of a problem for residual
Kirchhoff migration than it is for any Kirchhoff migration. This underscores the theoretic

equivalence of residual migration to full remigration.

Another, related problem that occurs in Kirchhoff migration results from the hyperbolic
moveout corrections performed prior to summation. This differential time shift, or NMO
stretch, varies inversely with velocity. Stretch must be limited to prevent high frequency
attenuation and other related degradations. Fortunately, stretch is even less of a problem

for residual Kirchhoff migration than it is normally.

For a residual migration with constant v, , stretch is defined as the change of apex
(migrated) time with respect to flank (unmigrated) time which, in terms of the summation

paths of (17), is given by

2 J1r2
dr_ _ i (23)
dr, U2
Substituting L, for x once again, we find the maximum stretch for residual migration,
[ ar |
T
= 8. (24)
l dT: Iz =1L

Referring back to f in equation (11), we can see that stretch for a residual migration
decreases as the initial migration velocity becomes more accurate. This emphasizes that

residual migration (ideally) performs only a minor operation on data.

Finally, dividing equation (19) by (21) yields the elegant relation

dT; - W (25)
dit e

between NMO stretch in Kirchhoff migration and the frequency downshift of migrated dips,
reconciling both wave- and ray-theoretical views of migration.

*
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Implementing residual Kirchhoff migration

We have chosen to use a Kirchhoff diffraction-summation aigorithm for the residual
migrations illustrated in this report. The choice is practical: a Kirchhoff algorithm allows local
remigration of an arbitrarily small subset of previousiy migrated data, and has no causality
(stability) problems when crossing a zero of the residual velocity function. Finite difference
algorithms, though adaptable to this problem, demand more conventional input, being less
conducive to small, sectional enhancement. The remaining alternative, frequency domain

algorithms, are the least efficient for a residual task - no savings are gained whatsoever.

Any Kirchhoff algorithm normaily used should be capable of residual migration. We have
found it necessary, however, to make some minor, but important, adjustments to avoid
numerical problems. These occur when the initial migration velocity is nearly equal to the
true velocity, leaving a residual migration aperture as little as 1 or 2 traces wide, or even
less. Two problems then become apparent. The first is cosmetic - residually migrated data
may contain noticeably unattractive computational artifacts where the aperture change is
large in proportion to its size; for example, where the aperture radius increases from 1 to 2
traces. The second, related problem is fundamental to the accuracy of residual Kirchhoff
migration. Kirchhoff algorithms essentially perform numerical integration over hyperbolic
paths. The accuracy of this integration (or, indeed, of migration in general) is directly
affected by the trace spacing (Larner, Gibson, and Rothman, 1980). Recalling the geomettric
view of residual migration described earlier, and the traveltime curve for a residual diffrac-

tion,

Tsz = Tz+ l' ] ’ (26)
2
v2§1—[vm ] J|

we note that the factor in brackets may just as easily be _thought to modify z instead of v.
Residual migration would then be conducted with the same velocity, but with the new, wider

trace spacing

2]-1/2
. (27)
J

Aliasing, as we have shown, is still no more of a problem than it was previously. But the

U

v

[
Az’ = A.ﬁ:{‘] -

stretched spatial axis doe 5 indicate the coarseness of the numerical integration that is per-
formed. We have chosen to ensure numerical accuracyﬂ\by spatial interpolation, decreasing
Az’ to its original width, Az. This does limit the savings gained by a residual Kirchhoff migra-
tion, but, if strictly applied, still results in an aperture reduction by a factor of

1 —(u, /v)?]/? [see equation (16)]. Numerical accuracy does not solely hinge upon this
m
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square root factor, however, and is in practice largely dependent upon the range of spatial
and temporal frequencies in the data. We note that explicit trace interpolation is not neces-
sary; more sophisticated numerical integration schemes are based on coefficients obtained
by analytically integrating interpolated data. These methods have not yet been imple-

mented, however.

When ve'locity is not constant

When the first migration is performed with non-constant velocity, residual migration,
much like two-pass 3-D migration, is not exact. Consider a point diffractor between two
layers with velocity v, in the upper layer and v in the lower. The time section would be an
hyperbola characterized by the velocity v, of the upper medium. If we now migrate it with
velocity v, in layer 1 and zero in layer 2 for our first pass, the diffraction collapses nicely to
a point. A second pass with zero velocity in the first layer and w3 in the second leaves this
picture unchanged - a perfect migration. Reversing the order we have quite a different
story - the first migration will do something to the diffractor which in turn insures that the

second migration cannot collapse it to a point.

We can even make the stronger statement that no velocity is correct for the second
migration. We can see this by calculating where the initial hyperbola
2
t2 = t2 4 A2

(] 'Ulz

(28)

is migrated using the summation paths

2

(t—1,)% = (r—t,)%+ (29)
Vg

This can be done by equating dt / dx with dt/ dy from equations (28) and (29) to find the

points of tangency and the corresponding apex time T and offset 2 = z —y to which energy

migrates. Thus we solve the simultaneous equations

vt %— = 4z
(300
dt
'Uzz (t—ta)_dz = 4y

N

for y and substitute in equations (28) and (29) to find the resulting curve described

parametrically by

2
22 _ 2 _ 42 [ _ 22 (t _to) ]
: = (t? - t3) l1 z ; ]
2 2 2 . (31)
_ 2 _ _ 2 _ Vo (t _to)
(r to) = (t ta) [1 'U12 e }
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In the case v, = v, we can solve explicitly and get

22 _ (T - ta)s

vE  B8t, -1

(32)

which is neither an hyperbola nor an ellipse. No summation path, hyperbolic or elliptical, can

collapse this to the correct position.

That the first order of migration did properly migrate can be generalized to the state-
ment that a constant velocity migration can be followed by a depth variable residual migra-
tion to achieve the same effect as a full depth variable migration. A straightforward proof of

this is presented in the Appendix.

Field data example

Figure 4 displays a zero-offset, unmigrated, stacked section of data from the Gulf of
Mexico. Dip moveout (Hale, 1982) has been applied prior to stacking. The traces are
spaced 33m apart, and the temporal sampling interval is 8 msec. The true migration veloci-
ties range from 1650 m/sec to 2000 m/sec. The steepest dips on the section, the fault

plane reflections, are between 30 and 40 degrees.

Figure 6 shows the same data after a constant velocity Stolt migration with v,, = 1600
m/sec. For these data, correct migration velocities are those which most accurately place
the fault plane reflections in their proper positions - at the bed truncations demarcating the
growth faults. Velocities here vary both laterally and with depth; evidence of the lateral
variation is seen by observing the fault reflection beginning at about trace 100, which is
further from its proper position than the other major fault reflections on the section. This
indicates that it emanates from a different azimuth relativg to the other major fault reflec-

tions in the data, and needs an artificially high velocity to be correctly migrated.

Figure 6 displays the residual migration, using our Kirchhoff algorithm, of the data in Fig-
ure 5. The fault plane reflections, slightly mispositioned before, have now migrated to their
correct locations. The aperture haif-width of this migration ranged from 1 trace at the top
of the section to 17 traces at the bottom. Due to the very small residual velocities at early
times, traces were interpolated to 4 times the actual trace spacing prior to summation along
diffraction paths. Although this degree of interpolation was only necessary for the shal-
lowest data, programming considerations made this the most expedient (but not necessarily

computationally efficient) choice for the entire section.

Figure 7 exhibits the full Kirchhoff migration of the original, unmigrated data in Figure 4.

The aperture width used here ranged from 17 to 47 traces. This section should be
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FiG. 4. Unmigrated, zero-offset stacked section of data from the Gulf of Mexico.
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FIG. 5. Stolt migration of the data in Figure 4. The migration velocity used was 1600 m/sec.
Note the slight, laterally variable mispositioning of the steep fault plane reflections.

SEP-35



Fothman, Levin, and Rocca 1638 Residual Migration

0] 50 100 150 200

I

°1

il

=
=
—

FIG. 6. Residual migration of the data in Figure 5. True migration velocities for the data
range from 16560 to 2000 m/sec.
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FIG. 7. Full Kirchhoff migration of the original data in Figure 4. The four-fold interpolation
used prior to the migration in Figure 6 was also used here.
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FiG. 8. Full Kirchhoff migration of the original data in Figure 4. No interpolation was per-
formed.

compared with the equivalent residual migration in Figure 6. As expected, the two sections
are virtually identical. The most discernible differences, however, occur at the sides of the
data, arising from side truncations of operators of different iengths. For purposes of com-
parison, the same 4-fold interpolation used for the residual migration was used here. Full
migration without any interpolation is displayed in Figure &: The data are now contaminated
by computational artifacts, especially at early times between traces 100 and 150. The
poorest regions correspond to where the migration velocities varied strongly in the lateral
direction. This full Kirchhoff migration, due to inadequate numerical integration as discussed
in the previous section, was unable to properly handle the higher wavenumbers when velo-
city varied laterally. Thus, while interpolation may be a regrettable necessity for low velo-

city residual migration, it may also be desirable, as it was here, for ordinary migration.

A
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Where now?

We have examined residual migration up to now as a tool for sharpening and fine tuning
time migration and have gained some insight into its limitations. We still need to investigate
the v(z) issue. In particular, we expect that the user would prefer to apply residual migra-
tion to his best previous migration output rather than some constant velocity result. While
the results of Gibson, Larner, and Levin (1983) on velocity error in 3-D migration give us a
handle on what happens when migration velocity is to be changed by a constant factor, our
simple example suggests we might encounter hidden pathologies when trying to modify the

velocity field patch by patch.

A related issue is whether residual migration is the best tool for improving time migra-
tion. Dave Hale (private communication) argues that constant velocity scans using Stolt
migration as presented by Chun and Jacewitz (1978) are at least as fast as residual migra-
tion. Dan Rothman takes a first look at this argument elsewhere in this volume in "A short

note on constant velocity migrations.”

Finally, we want to investigate residual depth migration. Heuristically, we have used
residual migration to collapse small diffraction patterns resulting from velocity errors. From
the viewpoint of Hatton, Larner, and Gibson (1981), we have split (and then separated) the
diffraction term of the one-way scalar wave operator into two parts - the diffraction term
for the first (incorrect) migration plus a residual error term. We have ignored, so far, the
effect of velocity errors on the thin-lens term. Including this effect should lead to residual
image ray correction. We are presently looking to the theory of asymptotic rays to unify

the two corrections.

Conclusions

Residual migration is an efficient, wave-theoretically valid procedure when applied after
an initial constant velocity migration. The effort expended by a preliminary migration sub-

stantially reduces the effective dip, velocity, and frequencies input to a residual migration.

The examples shown have demonstrated the practicality of this procedure. Numerical
inaccuracies arising from very small residual velocities may be avoided, in the case of resi-
dual Kirchhoff migration, by spatial interpolation prior to low velocity diffraction summation.
Although only instances of undermigration have been _exhibited, overmigration may be
corrected in much the same manner with a modeling algd}ithm. As discussed by Rocca and
Salvador, residual migration may be applied to data that is both under- and overmigrated,

first by migrating the lower half, then by modeling the upper portion.
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Appendix

We show when residual migration is wave-theoretically exact. This is demonstrated for
two cases; first, for constant velocity migrations, and then for constant velocity migration

followed by residual migration in which velocity varies with depth.

Stolt migration of a wavefield p{x,t,2=0) is performed by the mapping
k, = Vo —v?%} (A1)

and the inverse Fourier transform

dk, dk, . (A2)

Ti dew
! i
! |

2(z,0,7) = ffP(kz,w)eik’x—ikT ik,

Assume that migration is instead performed with velocity v, #v. The change of variable is
now expressed as
W = Vo ugk? (AB)

ahd the partially migrated image is

’ dw
Pdw

|
piz,0,7) = [ [Plhkgw)e™ 7 1dkxdw’ . (A4)
|
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Migration is completed by the residual migration of p, with velocity v, = V¥®*—v2. To do

this, we define a new time section, g (z,t,0) = p,(z,0,7=1). The Stolt mapping we now use

is
k, = VoF—uik2
= Vo —v%%k2 , (AS)

and the residually migrated image is

do’

q(x’o’,r) — fo(kx’w,)eikzx—ikr‘r dkT

dk di, . (AB)

Substituting from equation (A4), the 2-dimensional Fourier transform of q(z,t,0), we can

then write
dw ikyz it | dw’
q(z,07) = [ fPle0) | = o | dk, dk,
T
= [ [Plgw)e™=" %" :]‘;’ dk, dk , (A7)
T

This is the same integral as equation (A2), proving our assertion for constant velocity migra-

tions.

For migration with depth variable velocity v(z) we use the phase shift equation

.
~if VB B QxR dt
0

p(z,0,7) = ffP(kz,w)eik’xe dk,dw . (A8)

If, instead, the Stolt migration described in equation (A4) is performed first, the output data,
q(z,t,0), may be residually migrated with velocity v.(z) = Vv?(z) —v,2 according to the

formula

.
[T IE R e
0

g(z,0,7) = fo(kz,w')eik’xe di, dw’ . (A9)

Replacing § with P as we did in equation (A7), and also substituting o for w’, we get

T

i (@) —vB (kR d¢

e ° dk, dw’

ik,z

I

ffP(kz,w)

dow
Y

g(z,0,7) .

,
o W VFEORR A
J [Pk w)e™%e 0 dk, do (A10)

1]
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equivalent to expression (A8). Residual migration can thus be extended to depth variable

velocity.
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