Slope sensitive dip move-out correction

“Shauki Fonen

Abstract

Spatial aliasing reduction by dip move-out (DMO) is rederived and discussed in both
time and frequency domains. A synthetic example in which an aliased zero offset section is
compared with a stack after DMO is given. The DMO reduces most of the aliasing hoise; the
remaining noise results from undersampling in the offset and in midpoint directions. Theoreti-
cally the aliasing in the offset direction should not be a problem, this is shown in a synthetic
example. A way to reduce the remaining midpoint aliasing noise by using a spatial derivative

is described.

Aliasing reduction by DMO

The relation between the Fourier transform of a common offset section after normal
move-out (NMO) P, (k,w) to the Fourier transform of the zero offset section Py(k,w) is

approximately given by

hzkz ]
2wt

Po(k) = exp ll—i PL(&) (1

The appearance of w and { together in the all-pass-like operator indicates that it is

time dependent. A derivation of relation (1) is reviewed by Ronen, this report.

Suppose we have a few common offset sections P,Es)(y,t). The superscript (s) implies

that these sections are spatially aliased.

PNE) = Y Palic — nkg) (2)

where kg = 2n/ Ay is twice the Nyquist frequency. Let Péf}t)(k) be the section after

applying NMO and DMO to the aliased common offset section. It is exactly the zero offset
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section if there is no aliasing.

_ . hRk? . hP(k —nk,)?
Pé?)‘)(k) = exp[—z oot } %}Po(k —nko)exp{z Y (3)
s [ 2e)
= ;P()(k ——'n.lco) exp 1 2ot n l’n - ;O—J
The stack is the sum over offsets
| h?k§ 2k
Stack(k) = Y, Polk —nky) 3, exp |4 n|n - — (4)
"y h 2wt ko

The signal, (n = 0 term), stacks in; while the aliasing noise, (n # O terms), does not,
except for some problematic frequencies. One kind of noise is when k = nky/ 2 and for all
w; the spatial frequency is an integer multiplication of the Nyquist frequency. This noise
appears in Figure 3 as ridge O, it will remain regardless of the number of offsets as can be
seen in equation (4). Another group of noisy frequencies is when the argument of the
exponent is 127 times an integer for all offsets. This defines a group of spatial and tem-
poral frequencies that appear as 'ridges -2,-1,1,2 " in Figure 3. The "27rj noise" disap-
pears when the sampling rate in the offset direction increases. A more complete discussion
is given by Ronen and Rocca in SEP-32. The improvement in spatial resolution is mentioned
by Bolondi et al, 1982, and by Salvador and Savelli, 1982. Figure 1 describes stacks and
migrations for a model of a single point diffractor, with and without DMO. Without DMO the
hyperbola on the stack is poorly sampled; in comparison after DMO the hyperbola is interpo-
lated, but some noise remains. The remaining noise is the "Nyquist noise'; it appears on the
stack as bristles on the hyperbola and migrates to period\ivcal artifacts which are just rem-

nants of the aliasing noise we see on the migrated section without DMO.

In the time-space domain the transfer function of a point diffractor using data from one
common midpoint gather is a "V'" pattern having one side on the expected zero-offset hyper-
bola and the other side on a symmetric hyperbola. (Rocca and Ronen, 1882). Figure 2 shows
two V patterns. For each V the arrival time from one point diffractor to one particular mid-
point were calculated for a number of offsets, then normal moved-out, then dip moved-out.
In both V's, the range of offsets was up to the depth of the point diffractor. The difference
is that the left V has more offsets. The figures were oS\tained with finite differencing DMO

(Ronen, this report); hence, part of the noise is evanescent, such as that above time 180.
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FiG. 1. Spatial aliasing reduction. One point diffractor.
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FIG. 2. The V pattern. Left: well sampled offset axis; 30 offsets. Right: poorly sampled
offset axis; 9 offsets.

The noise in the middle of the '"V" pattern corresponds to the "27j noise"; it depends
on how the offset axis is sampled, getting stronger if the offset is poorly sampled. Uniform
offset squared sampling (Ronen and Rocca, SEP-32) is optimal with respect to this kind of
noise. When the number of offsets increase, the "27j noise' is reduced as shown at Figure
2. Theoretically, seismic data contain enough offsets to avoid the "27; " noise, except for

very shallow events.

The more severe aliasing noise is the "Nyquist noise’. In the time domain it is identified
with the "wrong" side of the "V" pattern. It does not depend on the offset sampling and

vanishes only when the data are not aliased or in another way described below.

First derivative

The "Nyquist noise’” stems from the fact that for every common midpoint gather it is
impossible to tell which is the wrong side of the '"V'. However, if we have the in-line spatial
derivative of the wavefield, we are able to tell the right side of the "V within a single com-

mon mid-point.

if the derivative is to be recorded directly it means doubling the number of phone

groups, each station having two close in-line groups that will be summed to give the
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wavefield and subtracted for the derivative. There may be a way to calculate the spatial
derivative without special recording, with the wave equation, using the well sampled tem-

poral derivatives and the aliased spatial derivative.

Suppose we have the spatial derivative of the wavefield FP’(x,t), in addition to the

wavefield itself P(x,t). The Fourier transform of the sampled derivative is

Py (k) = Y ilk —nkg) P(n —nkg) (8)

. n

Define a composite common offset section:

[ 1 ]
Qn(k) = [Ph(lc) + %—P,}(k) )

1
2

Problems at k=0 can be avoided either by integration on z or by adding a k¥ depen-
dent weight w(k) such that w(k)/k is 1/k forbig k and vanishes at k=0, where we

do not have aliasing problems anyway.

In analogy to equation (2), &) is the sampled section

k —nk
ANE) = | T Pk k) + ¥ =Pk - nko) )
k
= Z [1 - T;ko Ph(k —’nko)
After DMO we would have
_ . hRE? (s)
Qb (k) = exp| —i =G (k) (8)

H

2k ) 2wt

- |
Y, Polk — nkg) {1 - M exp ihz,cg n [n - &”
" ]

The stack is

[ 5,2 ]
nk . h*k 2k
0 });explz ZQ:n['n——}! (9)
|

1 —
2k

Stack(k) = ), Polk — nkg)
n 0

The noise at nkgy/ 2 is eliminated. In Figure 3, the ﬂjnction multiplying the n = 1 term
Polk — kg) in equations (4) is compared to that of equation (9). 3a corresponds to (4) and
3b to (9). If this function is zero then aliasing is avoided. The 'ridge"” at &k = kgy/ 2 van-

ishes in Figure 3b. To generate Figure 3b a weight function was used to avoid troubles at
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k = 0. Looking at Figure 3, one should remember that in the summations (4) and (9) there

are conjugate terms n =—1 that give symmetric pictures.

f1 [cycles]

f1 [cycles]

FIG. 3b. With derivative. [Equation (9)].

Higher derivatives

This section is not a practical suggestion but a note that the result (9) is just a special

case. In general if we have /N derivatives Ph(j) 7=0,1, - - N, define
k) = 30 %4 plk 10
k) = 3 Gy ) (10)

The aliased section will then be

N ko’
&) = % Y a,-[1 - ”,c—} Palk = nkg) (1)
n j=0
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Let the coefficients aj solve

N N
: x
Zaj(1+x)3= 1+ = (12)
i 2
Jj
Then the composed common offset section will be
nk i
) k) = - 2 Pl —nk
Q¥)(k) ; [ 2k | ( o)

Using the binomial formula we get from (12)

(11111 1)]% (1)
1234 - N|| -
136 - : ,
1 .
= |2*)
a;
- N
v 1‘\a‘N‘ \Z—NA

The matrix is upper triangular with Pascal triangle coefficients. The solution is
o = 2]

The Nyquist noise will be suppressed in the stack

N [
k h*k§
Stack(k) = ), Polk —nkg) [1 - 2o ] ' ° n [n 2k
n

L' 2k | Z,;‘expllz 20t

Conclusions
DMO reduces aliasing noise except for two groups of frequencies:

1. Removable noise associated with undersampling in the offset direction. The number of
offsets in seismic data is probably sufficient to eliminate this noise, although it means

that DMO should be applied to many common offset sections.

2. Noise associated with undersampling in the midpoint direction. Independent measure-
ment or calculation of the spatial derivative, in addition to the function itself, enables
reduction of this noise. This may be considered if the remaining aliasing noise after
DMO is strong.
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The validity of the assumption in 1 and the feasibility of the suggestion in 2 are still to

be checked.
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