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Finite differencing dip move-out

- Shuki Ronen

Abstract

A method to correct dip move-out by finite differencing in (k,f) domain is described.
The shape of the impulse response is found to be a gaussian which is an approximation to
the exact elliptical shape. It is shown how this method can be adapted to operate before

normal move-out and to handle vertical and horizontal velocity variations.

Introduction

Bolondi et al, 1981, considered the differential equation

P _ A o,
orat = 1 P M
For any t; we can change variables by
log [-—t——] = (2)
L to J to
and obtain the equation
8*P  _ _ h 2 p (3)
ohdT tO
which is solved by
[ h2k? ]
Po (k,w) = exp ‘L—"L 2wt0 J_»'\‘Ph(k,&,’)) (4)

where ¢ is the frequency associated with 7.
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Equation (4) describes a time dependent operator that extrapolates in offset. P (k,w)

is the two dimensional Fourier transform of a section having common half offset h, Pg(k,w) is

the transform of the zero offset section. To calculate the impulse response of (4) consider

input of P, (7,z) = 6(7)é(x). The output will be

hEkZ]

) - (0T — kz
Py(z,7;0,0) = fdlcfdw gtlor ) exp 2ot j

—1

The phase of the integrand is

hPk?
= —kr —
& wT z 20t
The phase is stationary when
8d h2k
0 = — = —g —

ak &)to
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0 = . T + hk
ow 2w2tg

Therefore the impulse response is mainly on the parabola

z) = — Ity —éﬁ—

Now use (2) to find the shape of the response of (1)

_ = |
J

tf(:::) = tg exp ohe

This is an approximation to the ellipse

(5)

(6)

which is the exact shape of the impulse response of the move-out operator, obtained by

osculation of diffraction hyperbolas from a non zero offset migration ellipse shown by Figure

1. {Deregowski and Rocca, 1982).

The error in (6)

2 - 2
R I e
L3 tf-to[1 e expl hZJJ

is small since the ellipse is truncated for
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FIG. 1. Impulse response of DMO.
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The right hand side cannot exceed 1. If the mute allows NMO stretch of s then we

have

2h
'Uth <

If this error is a problem it can be handled in a way described below.

Finite differencing dip move-out

Consider equation (1) as an initial value problem. A-way to solve (1) is by finite dif-

ferencing. The difference equation

1 —a]

t — 4 t+1 ] _ t+1
Ph = o Pha PP - AR (7
with
2 _pR
o = hj+1 hJ k2

8t/ At

gives a way to extrapolate the data in offset direction. (Bolondi et al, 1982; Salvador and

Savelli, 1982.) For every common offset section, starting from the initial value of PhN(x,t),

transform over z, then for every k apply equation (7) to find Pnj from Pth, for all times.
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Figure (2) was obtained by applying (7) with impulsive initial value.

136
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FIG. 2. Impulse response of the finite differencing DMO done in the k —f domain. No trunca-
tion was done so the gaussian shape is clearly visible. The temporal dispersion may be

avoided by using a more elaborate numerical method.

Dip Move~Out before Normal Move~Out

Move-out is the operator that transforms a common offset section into a zero offset

section, its response to an impulse at time £, is the bottom of the ellipse

where [, is the NMO time:

The ellipse (8) is truncated at

t? z?
PEREE
t:  h
tR = tf -
L1 _ 2h?
X =
a i vt;

(8)

(9)

Moving-out a common offset section to a zero offset section can be done in two steps:
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(1) NMO with equation (9). This operator is velocity dependent but it involves just a time

stretch applied to each trace separately.

(2) DMO expands every impulse into the ellipse of equation (8), bottoming on the normal
moved out impulse. The DMO involves more than one trace at a time, it is time depen-
dent and velocity independent except for the truncation of the ellipse which is done
anyway when the evanescent field is removed after stack, either by dip filtering or by

migration.
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FIG. 3b. Doing dip move-out before normal move-out. (The wrong way.)
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Figure 3a shows how a "flat-top'" which is the constant offset section of a point dif-
fractor, is moved-out to the expected zero offset hyperbola by DMO after NMO. In Figure 3b
the order was reversed; every point on the flat top was first expanded to a DMO ellipse
bottoming on the input spike itseif at f, (instead of on the normal moved out time {,), then
normal move-out was done. The resulting osculation is not the zero offset hyperbola. The
stack wili be coherent only near the apex and on the asymptotes. Although normal move-out
should be done before dip move-out, we would prefer to have an operator DMO' that is

applied before normal move-out
NMO-DMO” = DMO-NMO
this defines the operator

DMO’ = NMO ! DMO-NMO (10)

tn_ -

th_ -

awl |

FIG. 4. Finding the response of DMO'.

We can apply this definition to compute the shape of the impulse response of the DMO'
at a time f,. Referring to Figure 4, starting from an impulse (¢t — ¢,), first apply NMO to
obtain 8(f{ — t,) at the NMO time {,, N

4n?
th = tf - —

v
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then expand this impulse with equation (8) to the ellipse t4(x),

2
x
tdz = tf (1 - ;LZ_J
2 _ ARP _zF
PR ( h?

4
t§ = t7+ 30
v
= o an2 ][, _ 22, an
h v? h? u?
4 2
- 2 _z 4z
= by |1 ha] e

tg (z) is the shape of the response of DMO' to an impulse at time t; on a section with

common half offset k. It turns out to be the ellipse

t3 [
—£—+z

1 =
reamibe el Bl (11)

which is curve (3) at Figure 4. In comparison, applying DMO to an impulse at t, gives the

ellipse
[y ]
——+z2[—J=1 (12)

which is curve (2) at Figure 4. Applying NMO to (11) will give (8) while applying NMO to (12)

will give something else.

The difference between (11) and (12) is

td'_td = td [1 + (13)

The correction is small near the apex when z << vf,, and on the asymptotes when
vty >> h and the extra term in (11) is negligible. Becau\ée equation (13) depends on the
distance z, it cannot be applied as a correction on a common offset gather. It is simpler to
do approximate NMO first and residual NMO after DMO rather then use a correction like

equation (13). A better way may be to apply DMO" directly.
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Finite differencing DMO’

We are interested in the DMO' ellipse (11):

td' = thl1 “.'L'z

h? vRLR J ]

We have a program that gives a response with a shape given by (6). Let h in equation
(6) be a fictitious offset hy, different from the real half offset h in {(11). The output of the

finite differencing will be

t; =t { z” ]
= exp | -
A TN
The error is
[ |
tf(z) — tf(z) = ty |1 — =P A2 | _exp |- z? ]
h?  WRE 2h§ |

The optimal i, will be slightly bigger than the true half offset £. To have zero error at

some x; # 0, in addition to the zero error we always have at £ = O we choose

z§

)

h®  WRtE

-
h‘f =
—Log[1 - .’Eg

The DMO' is velocity dependent through hg, but a crude velocity mode! is probably suf-

ficient.

In Figure 5 the error vanishes at the truncation point

zg = 2R*/ Uty

and curve 4 approximates curve 2 very well. The same correction can be applied to the
DMO if we are too close to the mute; here it was not and so curve 3 slightly deviates from

curve 1.
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time

FIG. 6. Curve 1 is the DMO ellipse, 2 is the DMO’ ellipse, 3 the finite differencing DMO gaus-
sian and 4 is the finite differencing DMO' gaussian with zero error at the end points.

Velocity variations

The dip move-out operator is independent of the velocity as long as it is constant.
Velocity variations, however, do have an effect. Suppose we have a point diffractor at
(z4,t,), (See Figure 6.) v, = v(z,,t;) is the root mean square velocity of the apex of that
event on the zero offset section. Consider a CMP gather at x # x,. The point diffractor will

appear on the CMP gather as the flat-top marked 1 on Figure 6:

]

[ L L
t(h) = :S;—I[zf +(x—za—h)2)é + [zf+(..":—,.":a+h)2]é ]

DMO' transforms the flat top to the hyperbola

1
4hR |2

t(h) =t —
'uaztz

1+

The normal move-out velocity of this hyperbola is v,, which is different from the velo-
city at the time £(h =0). On the CMP gather of Figure 6, 3 is the hyperbola of an event with
velocity v (f,z) that will stack in, while the hyperbola marked 2 is the DMO' of the flat top 1.

It will not stack in unless we correct by

1 1
4 o 2 5
Atcztl[1+4h]2— 1+4h 2}

vit? | L vRt? |
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time

FIG. 6. Curve 1 is the DMO ellipse, 2 is the DMO’ ellipse, 3 the finite differencing DMO gaus-
sian and 4 is the finite differencing DMO' gaussian with zero error at the end points.

Velocity variations

The dip move-out operator is independent of the velocity as long as it is constant.
Velocity variations, however, do have an effect. Suppose we have a point diffractor at
(z4,t,), (See Figure 6.) v, = v(z,,t,) is the root mean square velocity of the apex of that
event on the zero offset section. Consider a CMP gather at x # z,. The point diffractor will

appear on the CMP gather as the flat-top marked 1 on Figure 6:

[ . 1]
t(h) = ;1—11[%2 +(m:—x,,,—h)2]é + [zf+(z—xa+h)2]é ]

a

DMO' transforms the flat top to the hyperbola

1
4hR | =

t(h) =t —
vlt?

1+

The normal move-out velocity of this hyperbola is v,, which is different from the velo-
city at the time £(h =0). On the CMP gather of Figure 6, 3 is the hyperbola of an event with
velocity v (f,z) that will stack in, while the hyperbola marked 2 is the DMO* of the flat top 1.

It will not stack in unless we correct by

1+
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FIG. 6. 1: point diffractor at (z,,t,) before DMO'. 2: point diffractor at (z,,t,) after DMO'.
3: point diffractor at (z,t).

From Figure 6 we have:

Using this and sin8 = z—k— we find
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2412
E—t, v LK
8w
vkt
T =% = 4

And the correction is approximately

h?k? dv_ . hPk dv

At, =
¢ 202y 0Ot vew Bz
The corrected dip move-out is
hPk? t dv hik v
Atp 3 1 - ——] - -—
20°t | v Bt wu Oz

The operator is:
P(h) = exp[ iwAtp] P(0O)
It can be done by the differential equation:

9°P _ _
ohdt

v 0t 0

2 |
t | v Oz 0Ot

The vertical velocity variation correction is easily incorporated by reducing the ficti-

tious offset h; by a factor

-

\

The velocity model should have finite gradient.

L
Qy_]z
atJ

EIN

The described velocity variations correction should-be combined with DMO' (before
NMO). There is a slight difference if the correction is introduced in DMO after NMG. Aiso this
treatment ignored bending rays which turn out to introduce a correction with similar magni-

tude and apposite sign. (Deregowski and Rocca, 1981 and Dave Hale, 1983).

Conclusions

1. The described DMO method has small error below the mute.
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2. Time and velocity dependent corrections to the offset enable application of the DMO

before NMO and make it capable of handling vertical velocity variations.

3. Lateral velocity variations may be handled by adding a term to the DMO extrapolation

equation.
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