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Slant Stack and Velocity Stack Inverse Filtering

Jeff Thorson

Introduction: Missing data and nonunique inversions

Any attempt at performing an inversion that is inherently nonunigque must make some
strong assumptions about the data that is missing. If we are fortunate to have enough data
on hand to guarantee a unique inverse, or when noise is present, a unique least squares
inverse, the addition of more data may make a small impact on the problem. This situation
degenerates when the available input data becomes sparse and as the inverse (or as the
case may be, the least squares inverse) becomes ill-conditioned. Various general methods
exist that substitute other operators for the inverse if it is ill-conditioned or nonexistent.
Among them are stochastic inverses (those that weight the diagonal of the forward operator
before inversion) and generalized inverses, or pseudoinverses (Strang, sec. 3.4). Each of
these methods makes an assumption about the missing data. The missing data may be
estimated by first performing a pseudoinversion of the data, followed by applying the for-
ward operator that extrapolates the missing data points. This paper will concentrate on
determining the pseudoinverses of two commonly used operators in seismic processing: slant
stacking and normal moveout stacking. Data that is fed i‘f;to these processes, for example
common midpoint or common shot gathers, usually have the property that they are sparsely
sampled in the offset dimension A and bounded by a narrow range of offsets. The first limi-
tation gives rise to aliasing artifacts, while the second, the spatial limitation, gives rise to
truncation artifacts. This paper will also be concerned with the effects of truncation, or the

lack of wide-offset data, on the quality of the inversion.
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Projection operators and data truncation

Consider a data set d that is the result of a known linear process L operating on some
unknown u. In this and the following sections, bold-face lower case letters ("'u") will refer
to either discrete vectors or functions on a continuous domain, while bold-face upper case
letters (''L") will refer to matrices or continuous linear operators. If the data is incompletely
sampled, let the unsampled portion of the data be set to zero. This is equivalent to post-
multiplying L with a projection operator P that incorporates truncation and subsampling, as
well as irregular sampling. For good measure, let the data be corrupted with a bit of additive

noise n.
d = PLu+n (1

1 (present data)

Py (elements of P) = 4y (2)

0 (missing data)

The projector P can be considered to be either a square matrix with 1's or 0's down the
diagonal, or a non-square matrix with a single 1 somewhere in each row. The operator L may
be nonsingular and invertible, so that if "all" the data were present, a unique and exact u
can be obtained. Even in the presence of noise n, a unique estimate u can still be recovered
by least squares. With the presence of the projector P, a null space may be introduced into
the linear system PL. This does not say that PL always becomes singular, but in the case of
slant stacking described in the next section, it will be seen that a nontrivial null space
always arises from truncation of the data. The simplest case of degeneration to singularity
is where P leaves fewer data values than unknowns. The solution will certainly be nonunique
when it exists; the least squares solution is also singuiar. The least squares version of sys-

tem (1) is
L7PLu = LTd. (3)

Assuming that L has an inverse, and likewise L7, the null space of LTPL is equivalent to the

null space of PL. Therefore the least squares system has the same null space as system (1).

There are two ways to avercome the non-uniqueness of equation (3) when the least
squares operator is singular. The first is to apply the pseudoinverse L* of L to d. The
second is to positively weight the diagonal of L7PL until the modified linear system L7PL + D
becomes nonsingular. The pseudoinverse solution u = l\.*d guarantees that u is identically
zero in the null subspace of PL, while the second alterﬁ‘ative may allow nonzero values of u
in the null space, since the operator itself has been perturbed so that it is no longer singular.
In the following sections the pseudoinverse solution will be detailed for two operators that

are important in seismic processing: slant stacking and velocity stacking.
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Pseudoinverses

Also called generalized inverses, pseudoinverses are most easily characterized by their
singular value decomposition (SVD). Consider the operator PL of the last section. Let the
unique SVD of PL be:

[ »
u, “A;’ 2“ | @)

where U,, U, and V,, V, are partitions, respectively, of two unitary matrices U and V. The
matrix A, consisting of the singular values is diagonal. Assume P is square here, so that

PP = P and P” = P. Consequently,

(A, 0lluf]
p = | e ol Y |
LP = |V, V, o ollur] (5)
Because UTU = I, the least squares functional shares a similar SVD:
f/@ ollvr]
_ ]
L7PL = 1V, V, Jl o llVole (6)

Equation (6) also happens to be the eigenvalue decomposition of the least squares system
LTPL. By definition, the pseudoinverse of L is formed by inverting the nonzero singular

values comprising the diagonal matrix A.

[Apl ollurl
(PL)* = vp Vo il o OHUOTJl' (7
The pseudoinverse of LTPL by inspection is then
(LTPL)* = {vp v, }{Aof g]{*\;ﬂ €))
Therefore
(PLY* = (LTPL)*(LTP) (9)

gives the relationship between the two pseudoinverses (PL)* and (L7PL)*.
The process of applying the pseudoinverse operator can be broken down into the fol-

lowing steps:

b
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1) Apply the transpose L7P,

2) Transform into the eigenvalue space of LTPL using V7,
3) Invert the nonzero eigenvalues of Ap,
4) Inverse transform via V.

If the singular value decomposition of an operator is known, this procedure gives the pseu-
doinverse. The solution will have no nonzero component in the null space of the operator PL.
The dimensions of linear operators are proportional to the size of the data set that is being
operated on. Considering the size of the dimensions in the case of seismic processing, it
would be impossible to generally determine the singular value decomposition of any operator.
But there are exceptions: the operator may separate into smaller dimensional pieces, or the
eigenvector space may happen to coincide with Fourier transform space. Such is the case
for slant stacking, but only for particular forms of P. The next section will deal with slant
stacks: what they are, and the effects that applying a projector P have on the data before

stacking.

The alternative to the pseudoinverse, that of adding a small value to the diagonal of
the operator LTPL, easily removes the problem of the null space. For example, consider what
happens to the SVD when a constant «?l is added to L7PL:

[ a o [[vrl
L7PL + o®l = lvp v, JIA;M 2|J J (10)

o
Since all the singular values are now positive, the least squares operator is nonsingular. If
of is small, the inverse is approximately

Vi

fv7]

“ TJ (11)

O

Apz 0

p Yo Oazl

(LTPL + a®1)! w~ {v v {[
This operator will behave properly only if the data has no energy residing in the null space,
otherwise a2 will cause a large amplification of these components. If the data actually
resulted from the application of PL [equation (4)] to some model, it would have exactly
nothing in the null space, and it would be possible to use (11) in place of the pseudoinverse
(7) in order to arrive at the same solution. If (11) is accurate, the choice of whether to use
(7) or (11) turns out to be a choice of convenience. Note that adding non-constant positive
values to the diagonal of LT7PL instead of a constant o will change not only the singular

%

values A but the unitary matrix V as well.

It was stated above that if a vector d has no component in the null space of LTPL, it
makes no difference whether it were fed into the operator (11) or the pseudoinverse (7);

the same output would be obtained. It would be hoped that a similar situation holds between
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the pseudoinverse (LTPL)* and the inverse of the full operator LTL, but in general it does
not. Assuming that L has an inverse (in corhparison to PL which does not), (LTL) ! exists.
The question is whether (LTL)“1 may be used in place of the pseudoinverse (LTPL)* to
obtain the same output u. This is true only if the two operators share the same eigenvectors,
that is, when they both have the same unitary V matrix in their singular value decomposi-
tions. Upon first thought this may seem to be a hopelessly stringent requirement, but we
shall see that for slant stacks this requirement can be satisfied, but in order for this to be

so the truncation projector P must have a particular structure.
Under these favorable conditions one has a choice of inverse operators to apply. Here
we assume d arises from an application of the forward operator:

d = Plu+n (1)

where n is an independent noise term. Ideally n should be zero so that no null space com-
ponents are introduced into d. But if noise is allowed to add into d, L7p may be applied to
annihilate any component of d in the null space. The following theorem summarizes these

facts: (Theorem A)

Let d = PLu for some u (i.e. noise n = 0 in equation (1) ). Then d has no nonzero
component in the null space of PL, which is the space represented by the zeros of
P. Also, for positive scalar o, the following two systems yield the same estimate u

as a —* 0:
u = (LTPL + o) 7!L74, (12)
u = (L7PL)*LTd. (18)
Furthermore if LTL shares eigenvectors with LTPL, then the estimate u found by
u= (LTDTd (14)

is equal to the estimates u given in equations (12) and (13).

For the proof of the last statement, recognize that (L7L)! can be expanded as

(A2 o vl
LTy = [v,, v, “g AZZHV:T} (15)

Comparing this to the eigenvalue expansion of (LTpL)* given in equation (8), the effect of
the projection P is simply to replace the eigenvalues Ao with zero values. Since d has no
noise, L7d = L7Pd. Inserting (15) and (5), the SVD of LTP, into the expression (14) for u
yields

SEP-35



Thorson 90 ' Inuverse filtering
A, ©
[ 0 0

Multiplying the two diagonal matrices together will zero out the A, eigenvalues, making equa-

U
» Vo U

14 0
Jl 0 AF

[ EE——
—_———
[P

r 5 |
u= v oled (16)

tion (16) equivalent to (13). This proves the theorem.

Slant stacking and dip filtering

This section will illustrate the ideas introduced above with the choice of slant stacking
for the operator L. Suppose we have a two dimensional data set, denoted by u, which is
indexed by the two parameters p and 7. Let p be the horizontal axis, having the dimensions
of slowness (inverse velocity). Let T have the dimension of time. The slant Stack operator L

is defined to be the linear operation

L: wlh,t) = fdp w(p, 7=t —ph) (17)

The index A is a spatial index: it has the dimension of length, and in this paper it will assume
the role of offset from the midpoint of a gather. Typically the sampling in time is sufficiently
dense that the nyquist frequency happens to be greater than the highest frequency on the
data, assuming that the data has gone through a filtering stage. On the other hand the sam-
pling in p or k, for actual seismic data, is coarse and narrowly limited. The slant stack defin-
ition (17) assumes that w(p,7) is continuously sampled in p. The input w(p,7) may be arbi-

trary, but assume that the range over which it is nonzero is bounded:
u(p, ™) =0 for |p| > Prex (18)

While the input u is to be bounded in the range of p, the output w is not: there can always
be found a nonzero w(h,t) for an arbitrarily large h. This is where the projection P comes

in. It restricts the output of (17) to lie within a certain h range:

[1 h,<h <h,

P: P(h’t) = 0 otherwise (19)
fdpu(p,rzt—ph) hy<h<h,
PL: w(h,t) = ) 0 2 otherwise (20)

The adjoint of the operator PL is, with respect to a normally defined inner product space, is

(P

L7p: u(p,7) = [dh w(h, t =71 + ph) (21)
1
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A "normal” inner product space has an inner product of the form

(uuz) = ffdp dt u(p,r) us(p,7). (22)

The normal operation of slant stacking is equivalent to the adjoint L7p defined above. It
is viewed as stacking each constant-h trace of a data set w(h,t) at different slopes p,
the data being bounded by the offsets h, and hy. If a seismic data set happens to consist
of a number of constant dipping coherent events, it may be accurately modeled by a slant
stack (17) of a sparse function u(p,7). Therefore it is more appropriate, in slant stacking
seismic data, to attempt to recover the inverse u = L*w rather than do the forward opera-
tion u = L7w. The latter operation will contain all of the truncation artifacts introduced by
the finite aperture h; < h < hy. The ideal solution u should be independent of the aperture in
h, but this depends on how valid the model w = Lu really is. Therefore, we may summarize
that one objective in slant stacking is to reduce truncation effects due to the finite
aperture in h of the data. This may be done by applying the pseudoinverse operalor Lt

to the data in place of the standard slant stack operator LT

From the previous section, the pseudoinverse is L* = (LTPL)*LT, and so the pseudoin-
verse may be implemented by first stacking the data with L7 (equation (17)), followed by
the filter (L7PL)*. It will be shown that this latter operator reduces to the "rho filter" |w]
as the aperture of the data expands to infinity: h; » —e, hy; » =. In theory the rho filter
yields an exact inverse L™! to the slant stack operator, but of course in practice the data

will always be severely limited in the horizontal dimension h.

Estimating the slant stack pseudoinverse

This section will be concerned with deriving L7pL a\f;d (LTPL)* for slant stacks. The
expressions defining L, L7, and P are those of the last section: equations (17), (19) and
(20). The pseudoinverse can be found because of the simple structure (19) imposed on the
truncation P; the orthogonal transformations in the singular value decomposition of L7PL turn

out to be Fourier transforms.

The response Lu to an impulse w(p,7) = 8§(p —PF)3(7-7) is

1]

wlh,t) fdp 8(p —P)6(t —ph %)

5(t ~ph —%) (23)
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Applying LTP to this gives the impulse response of LTPL:

ks

ulp,r) = [dh 6(r+ph —ph —7)

1

f an, STho) (24)
%, Ip—ﬁl

where hy = —(7-%)/ (p —P). Thus

lp—F]~! for h; < hy < hy
u(p,7) =
0 oltherwise
|p—8|"H(ho—h,) H(hy—hg) (25)

where H(x) is the Heaviside step or unit step function. With this result the transformation

L7PL may be represented in the form of a double integral with kernel X:

u(p,n) = fdp Sar kG, 5.2 2 (26a)

in which the kernel is

T—%

K(p,75 8,7 = |p-P| ' H- ~h,

H[h2+ ﬂl (26b)

PP}

Note that K is convolutional in both 7 and p, therefore the filter is multiplicative in two
dimensional Fourier transform (2DFT) space. In other words, the operator L7PL is diagonal-
ized by a 2DFT. With respect to the Fourier transform, it is important that the forward and
inverse transforms be adjoints of each other; the singular value decomposition requires that

V and V7 be adjoint. The transform convention used here is

A(gm) = -Zlﬂ—fdp deu(p,'r)e_"‘fP’“"’, (27a)
ulp,) = 5—[de [dyaten erieerion (27b)

In what follows, the forward 2DFT is identified with the operator V7 while the inverse 2DFT
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is identified with V.

To find the filter (26b) in the Fourier domain, Fourier transform the kernel K(p,7):

L gl T T | -itp-inT
zﬂ._/;:['dp dr |p| H[ : hl}Hh2+IT]e

~h —hgp ]

o 1P 0
1 - —1,—iép—inT
oy [dp{pdT+fdpdeJ{|p| e (28)

(CX))

—00 _.hlp

This partition of the integral keeps the sense of area under the double integral positive.

Now let 7 = hp, d7 = p dh. By change of variable the integral becomes

o —h'l
Riem) = o—[dp [dn |p] |p|te itp-ineh
2 4 “hg
~hy ~hy
= [an é¢ +nn) = [an 6(6/m + h) (29)
Yo he Inl
Therefore

H

hy — f}—} (30)

where H(zx) again is the unit step function, and is used to define the region where the filter

Kigm) = |77I—1H['n£“'h1

is nonzero, that is where the delta function of equation (29) lies within the finite bounds of
the integral. The nonzero region of the filter X(£,7) in the Fourier plane is shown in figure 1.

As h, » —= and h, - o, the filter covers the entire Fourier plane.

The pseudoinverse is characterized by taking the inverse of the nonzero portion of the
filter in the Fourier domain. The null space of the operator LTPL is obvious in this case; it

comprises events whose dip spectrum lies outside the nonzero range of the filter in figure 1.

hz—i—] (31)

As the aperture (h,, hp) is widened, the filter converges to |77}, the rho filter. A time-space

The pseudoinverse of K is thus

R em) = Ian[fl——hl H

domain implementation of this filter is preferable, for remember that in practice the spatial
axis is discrete and limited. A Fourier transform impiementation of the filter in that direction

will result in serious wraparound problems. Therefore find an expression for K' in the (p,7)
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T 7.
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%

FiG. 1. Slant stack impulse response L7PL in the space domain (equation 26b) and filter in
the Fourier domain (equation 30).

domain:

H

hs — ﬂ eip$+i‘m (32)

Again let h = ¢/ 7 be the new variable of integration so that { = nh and d¢{ = |n|dh. The

limits of the integral shall be taken to enclose a positive area.

o0 ha
+ — 1_ 2 Jin(r + hp)
K(p,'r)—zﬂi'dn‘!;dhne

1 —in im‘[ inphg z'v,};hl]
= 2ﬂ_£d'r) p e*Mle e

1 —i7__in(T + phy) 1 —in _in{r +phy)
= -— d —_ —
2rd o e 7 2nd p e dn (33)
or,
K*p,m) = p1—c5'(‘r + phy) — pl—,»?d'(r + ph ) (34)

The filter is depicted in figure 2. It consists of a delta derivative positioned along the slopes

—hg; and —h,, with a weight of 1/ |p| applied. This filter may be implemented by finite
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differencing at the positions where the delta derivative is. In a way the inverse filter uses
only the truncation effects associated with the forward filter X to do its work. With the dif-
ferencing operators positioned along the edges of the filter as they are, the inverse kernel

K" in (34) will detect variations of the input field at slopes —k; and —h,.

o

)

b']l

4

k o
o
o Q
< ) b
P.'- LIS Y )
B >
y""’/ )
kS _:al'
o >
<y

T

FIG. 2. Slant stack impulse response (LTPL)* in the space domain (equation 34).

For the infinite aperture case, h; » —< and hz; —» =, the filter reduces to the familiar
one-dimensional '"rho filter". This is seen by inverse Fourier transforming the expression

(81) with the unit step functions absent from the integrand:

K*(p,m) = 6(p) p(7) (35)
where p(7) is the inverse transform of |7]|, the variable 7 being a temporal frequency.
Strictly speaking the inverse transform of |7 | doesn't exist, but discrete implementations
of it do and can easily be found. Two ways of implementing the rho filter are possible.

The obvious way to design a discrete rho filter is to inverse transform into the discrete

domain. That is,

n/ AT

p(r) = f dn |nletr (36)
~n/ At

The limits of integration are bounded by the temporal Nyquist frequency n/ Ar. Performing

this transform yields
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-4 i, even
AR5 R T
p(r) = 0 Jr 0dd @7
2
i:rz jrzero (7 = j,AT)

The alternative is to calculate the continuous transform at 7 values where it exists. In this

case, the integral exists everywhere éxcept at 7 =0.

p(n = faninlen = == rso 38)

Ve T
Since the filter |7 | can have no DC frequency component, the remaining unknown filter ele-
ment 7 = O may be chosen as the negative average of the other components of the filter in

order to satisfy this constraint:

—_ (39)
j#0 JzATz

To summarize this section, recognizing the null space of L7PL allows one to see what
events are unrecoverable from slant stack inversion. Specifically, any events having slopes
outside the range of the slopes stacked at are eliminated in the forward stack and cannot
be recovered by the inverse. Apart from these events the original data may be recon-

structed by the following process:
(a) Given d, apply the transpose slant stack L7Pd.

(b) Apply a filter that is of the form of the pseudoinverse (LTPL)*. Now the slant stack
operator satisfies the conditions of theorem A of the previous section, so it suffices to

apply the whole-space inverse p(T) of equations (38), (39).

Table | summarizes the forward and inverse filters developed in this section for slant stacks.
For completeness, the operator LP'LT and its pseudoinverse is included in the table, which
can be used to invert the slant stack from (k,t) space to (p,7) space. The projector P’ limits

the slopes p to lie between p, and p,.
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Table I: Slant Stack Filters

Dip
Filter Range Space Domain Fourier Domain!
L7PL hl:hz 1 [ T [’L T [_g_ ﬁ_]
THl———h,|Hhs + VH|S~— k| |Hh, -
Ip] p 1 l 2 D 7l n 1 2 7)
o ™! Inl™!
T + 1 o 1 o
(L’PL) hy, hy ;,—d('r +ph.2)—;6('r + ph,) l,an_f___hJth_
n ) n
os ——;f 8(p) (note 2) Inl
LPLT , ]t t ol k
PrPel on IH[—,T—pl]HFZ + ,;] ol ‘H[—w——pl Hipg + 2
o [A]7 lw] ™

wPLNH* | p,, 15 Loe -
PPz ;d(t—hpg)—‘h—ﬁ(t hpy) |w|H—%-—P1}H 2+k‘]

“)
= Z2-6(h) (note 2) o]
Notes:
1. Fourier variables: 7 - n L »w
p-é h >k

2. The filter point at zero f or T is taken to cancel the mean of the filter.

Velocity stacks and slowness stacks

The important features of the pseudoinverse theory introduced in the first section of
this paper have now been illustrated with the slant stack operator. A more appropriate
linear transformation to use on seismic data, specifically common midpoint gathers (CMGs), is
the operation of normal moveout and stack. For example, one method of velocity analysis
applied to a CMG that uses no elaborate semblance measure is to sum along hyperbolas
corresponding to the selected range of velocities, each trace being weighted uniformly in
the sum. The similarity to slant stacking is obvious; let us call this operation velocity stack-

ing. Let the definition of the velocity stack operator L be
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Ve
w(h,t) = fd'u' w(v,Vt? — h?/ v?) (40)
Vi

The function w(h,l) represents the wavefield in offset space, indexed by offset h and time
t, while the function w(v,7) represents a velocity space or velocity panel. It is understood

that the integrand is defined zero when the square root turns imaginary:
u(v,Vt? —k¥/v?) = 0 t <h/v (41)

The limits of the integral may be replaced by +« if it is further understood that the function
w(v,T) is zero outside a certain range of time and velocity. As before, the projector P will
be defined as truncation of the wavefield over the finite offset aperture h;, < h < hy. This
represents the range of offsets over which the gather was recorded. The adjoint L7P of

equation (40) is

uw,r) = fd wlh, V¥t h2/vP) (42)
T +h2/1;

This was derived from the definition of an adjoint operator
(u, LTPW), = (w, PLu)y (43)

in which (¥, u) is an inner product in velocity space of the form of equation (22). Likewise

it is assumed that a corresponding inner product (W, w)z has been defined in offset space.

Rather than continue with the development of the pseudoinverse with the velocity
stack equations (40) and (42), let us turn to slowness stacks. The two definitions differ
only in the spaces chosen to uniformly sample from. In contrast to the velocity stack, the
slowness stack is defined to sample even increments of slowness p = 1/v. Let the slow-

ness stack L be the operation

w(h,t) = fd'r fdp 6(t — Vit? — p*h®) u(p,7) (44)
() 0

The determination of the adjoint L7 depends on the definition of inner product in slowness

space and offset space. Let the inner product in slowness space (p,7) be weighted by 7:

@ wp = [dp {T dr 2@, ulp,m) (45)
0

A similar inner product definition (weighting by ¢) applies to offset space. As a result the

adjoint L7 is found to be symmetric in form to (45):
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w(p,n) = [at [dn s(t — V77 ¥ pThE) win,t) (46)
0 0

The offset and slowness spaces are defined to be the quarter planes 0 < h < o, 0 < € oo
and 0 < p < =, 0 < 7 < . Only positive values of slowness have any physical meaning, and
since the moveout formulas are symmetric for positive and negative offsets h it is also suf-

ficient to restrict h to being positive.

The pseudoinverse of the slowness stack

The first step, as before, is to put the kernel of LTPL in convolutional form so that the
kernel of the pseudoinverse may be determined in Fourier space. From equation (45), the
response Lé(p —§)6(T-7) is

w(h,t) = 6(Vi? —phe — )

—z-‘—d(t — V3% 1 5h7) (47)
The impulse response LTPLS(p —P')8(7—) is, by (46),

he
o t =Vriy pzh2
u(p,T =fdh—~—dt—t ~ S— 48
®m) = ) dh et =D {tz\/?‘z—+§2h2 (48)
The delta function 6(¢t — ) is nonzero for a unique offset h? = h®. Transform it into a delta

function in A in order to invoke the sifting property of deltas:

hg

2 oR
u(p,7) = [dh T L 1p? - 92| 716(h - hy) =7
1

ho= -1 =T _
p? - p*

(49)

t?h-o

Now at h = hg, s equal to {. The integrand sifts out, with the exception that the integral
is zero if h, falls outside the range of integration. Taking this into account, and substituting

for hy , LTPLS becomes
ulp,7) = ¥|p? - p*| 121 —a*zl“l’zH[hg - hf]Hkg’ - hg] (50)

where H{z) is the unit step function. The nonzero parts of the filter are bounded by the

curves hg = h; and hy = h, which pass through the origiri; hy being a function of p and 7.

With the impulse response (50), the transformation L7PL may be put in integral form:

w(p,n) = [fap ar¥ k2 - p2 % -7 2(pM) (51a)
0
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hZ — i—] (61b)

The kernel K is illustrated in figure 3. The variables of integration now may be changed in

where

K(z,y) = |zy|7V2H H

Y _pe
z

an obvious way to form a convolutional integral.

wlz oy ') = fb[—;—‘;— %g—? Kz - By —9) 2EAYD) (81c)

The pseudoinverse of this rescaled operator may be found just as in the case of slant
stacking: transform the kernel to the Fourier domain, invert the singular‘ values of the
nonzero part, and inverse transform. The change of variables implemented above is an inver-
tible linear transformation D, allowing the operator to be diagonalized by the (unitary) Fourier

transform:
L7PLu = D 'UAUTDSu (62)

The change of variables x = p? and y = 7° is identified by D. U7 is the Fourier transform. A
is diagonal; it holds the values of the filter in Fourier space. There is an additional diagonal
S which represents the prescaling of & by 1/ 4% in equation (51c). Strictly speaking this
decomposition of LTPL is not a singular value decomposition, but if L7PL happens to have a

true inverse, it will be uniquely given by
(LTPL)! = s'plUATIUTD (63)

An approximation to the pseudoinverse then is gained by replacing A~ by P, A whose values

in the null subspace are annihilated by P,.

o

(LTPL)* = s~'D"'UP,A"WUTD (54)

i

If the system (564) is not a singular value decomposition, then theorem A of the first
section does not apply, and we cannot immediately substitute (LTL)* in for (LTPL)* in the
generalized inverse solution of u = (LTPL)*L7Pd and expect to get the same estimate for u.
The reason for wanting to do so is strictly one of efficiency; (LTL)* may be easier to imple-
ment than (L7PL)*. However the substitution may be made if the data d satisfies the rela-

tion d = PLU well, i.e. when there is little or no noise. The procf follows.

It is proposed that the estimate u be made in either of two ways: (LTL)*LTPd or

(L7PL)*LTPd. Both are special cases of the estimate
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u = {8‘10’1UP2A+UTD}{D“UPIAUTDS}E

I

$~ 1D 1UP,A*P,AUT DS (55)

where P;, P, are diagonal projection matrices representing clipping in the Fourier domain.
The data d = LU is assumed to come from ¥. P, corresponds to the original P. Now LTL is the
version of LTPL without any truncation which corresponds to P; = 1 in equation (54). Other-
wise P, = P,. As a matter of fact all operators derived from projections P defined by limiting
the aperture in h are diagonalized by equations like (52), and vary only in the scope of the
clipping P, made in the Fourier domain. Finally note that P; in equation (65) may be
replaced by either P, or the identity |, and the resulting u is unaffected. To summarize,
when no noise is present (d = Lu) an identical estimate u is obtained by applying (RADN

in place of (LTPL)* in equation (54).

The Fourier transform of the kernel K in equation (51b) turns out to have a simple

h3 + zi]e-ifﬁ'w
hE — (56)
7

Hk% - f—] (57)
7

Rather than continue with the limited aperture version of the pseudoinverse, we shall

expression:

H

KEm) H

A eyl Y _pe2
zﬂ[[dz dy |zy | H[ po hi

Ifnl””zH[f]——h? H

The pseudoinverse is defined to be

R em)

It

|sn|"2H[§7——h?

concentrate on (LTL)*. To reiterate, the use of the expanded aperture version is justified

tl

only if the data satisfies model (1) with n = O. In this case,

R em) = |én|VRH (D) (68)

and inverse transforming,

z #0

y #0 (59)

K*(zy) = %—Izyl‘s’gﬂ(—w)

As in the case of slant stacking, the inverse transform of (58) does not exist for all (z,y);
specifically at points where z =0, y = 0. But a discrete implementation of it will exist,

since the infinite limits on the integral will be replaced by finite limits. The easiest way in
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this case to determine the filter coefficients at points z = 0 and ¥ = O is to use the con-

straints imposed by the zero-frequency components of the filter. These constraints are

R Em) = 0 for £=0 fdx K*zy) = 0 forally
R (&m) = 0 forp=0 Sy K(zy) = 0 forallz (60)

Since the only coefficients in question are those at x = 0 and y = 0, they can be solved in
terms of the other known coefficients. This should be done at the discrete filter design

stage.

Table li: Slowness Stack Filters
Dip
Filter Range Kernel K(p,7; P,7)

LTPL hl’ hz ?lpz _ﬁzl—l/zl,rz _?EI—I/E HP.LOZ _h12] H[hég _hg]

(Note 1)
LTL)* | 0, 2 _ o ]
( ) 4pﬁ‘?‘|pz—-p‘z|‘s’2|‘rz—"‘1"2[“3/2H — 72 ?‘2
p* =9 )
(Note 2)
Notes:
1. e
hE = - ——=
e
2. The values of the discrete kernel at‘p =P,

7=% are determined by equation (60),

z =pty =T1°

It remains to change variables back into the original coordinates p and 1. The filters in
(p,7) space are summarized in table 1l for (a) L7PL with restricted aperture
0<h,<h <hy <, and (b) (LTPL)* with wide aperture 0 < h < =. Figure 3 is a display of
responses L7PL to a number of impulses in (p,7) space. »Eigure 4 is the response to the same
impulses, but calculated by a discrete implementation of\the operator L followed by L7P. The
differences between figures 3 and 4 can be ascribed to discretization effects that are not

present in the closed form expression (48) for LTPL. Figure 5 shows various impulse

SEP-35



Thaorson 103 Inverse filtering
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FIG. 3. Responses of LTPL to various impulses. The offset aperture defining P is
0.2 < h < 2.6 km. Spreading of energy is mainly horizontal, in the slowness direction, which
indicates a loss of resolution in velocity.

FIG. 4. The same filter L7PL as in figure 3, but this one was generated by a discrete imple-
mentation of PL followed by L7P. Discretization effects (bumps) are seen only at shallow
times when compared to figure 3.

responses of (LTL)*. Finally, the inverse (LTL)* was applied to the data set of figure 4 in an
effort to compress the events back to impulses. The resuilt is shown in figure 6. The

sidelobes of the impulses have been reduced significantly.

*
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FIG. 5. The response of (LTL)* given in table Ii, to impulses at £ = 0.4 and at time points T
evenly distributed on the time axis. Each response is zero in the upper right and lower left
quadrants, positive in the other two quadrants, and has large negative coefficients along
the axes p = §, 7 = 7, and a large positive coefficient at its origin. The parameters of this
filter are consistent with those used to generate figures 3\‘§nd q.

FIG. 6. The application of (LTL)* (figure 5) to figure 4. Artifacts prevail at small times, but
much of the energy in the sidelobes of figures 3 and 4 has been concentrated at the spikes.
The artifacts could be reduced by a post- low pass filter stage.

Summary: Use of the pseudoinverse

This paper has been concerned with the development of expressions for the pseu-
doinverses of slant stacking and velocity stacking. These filters may be used in two ways:
(a) to obtain a better stack, (b) to obtain an extrapolation via model determination, followed

by forward transformation. In the first case, the desired stack may be defined as the
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inverse operator L* applied to the data. It is an attempt at reducing the sidelobes (illus-
trated in figure 4) which are generated by the normal forward stack operation, L7, From fig-
ure 4 it is easy to see how multiples can severely interfere in the moveout and stack of data

at primary velocities.
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' SCHOLASTIC; APTITUDE TEST SCORES

- Students scoring ., . TotalinU.s, Applying to Stanford = - * Stanford share
) ' , 1972 1982 1972 1982 1972 1982
Verbal SAT 650, above 53,794 29,236 3,872 5,260 4% %
'Verbal SAT 700, above ) 17,56Q 8,240 - 1,164 823 7 . - 10
Yel‘bal SAT 750, above 2,817 1,479 241 168 9 11 .
Math SAT 650, above 93,868 71,916 3,872 5,260 Y B {
" Math SAT 700, above ' 37,067 29,528 2,220 2,873 - 6 10.
Math SAT 750, above 9,966 8,351 x875 - 1,057 - 9 13
Number of Number offered o . " Number of Number offer_ed
Verbal SAT applicants admission ‘Math SAT applicants . admission
700-800 1,024 463 700-800 2,913 . 98
600-699 , 3,681 1,121 600-699 . 5,051 1,024
500-599 4,636 672 500-599 : 3,361 ’ 391 :
Below 500 . 3,252 212 : - Below 500 1,267 67 L

—— e S

% college-bound H.S, seniors indicating ihtenhéd ﬁeid»of study (from SAT data) =

Physical . )

Year Math Sciences, . Engineering Englhh[Lit )
oo 1972 6. 4. =

l 97 3 - p P TN N 5
1974
1975
1976
1977
1978
1979
1980
1981
1082.

P

L5
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g

DCO 1w n 0
B Lo 00 0

%

k‘ X 4
M [l el eladelal oy )

Total U.S. students scoring 750 + on achievement tests

Achievement Test 1972 1982
English Composition. - 2,918 s . 1,302
Math 1 : ‘ - 5,679~ 2,218 -
American History 1,757 719
French ) ’ 1,884 839
Biology

. l,sm . 681 ‘!/ .
Chemistry 3,285 1,558 L



