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The Generalized Frequency-Dependent Surface-
Consistent Statics Problem

Chuck Sward

Introduction

In a recent paper, Taner and Koehler {(1981) showed that it is possible to find,
surface-consistently, how the amplitude of traces varies as a function of both frequency
and shot and geophone position. In this paper, | will describe a further extension of the
surface-consistent method. Previous methods found surface-consistent amplitudes and
time-shifts; | am attempting to find surface-consistent phases as a function of frequency.
So far, | have not succeeded in applying the method to real data, but | have gotten some

promising results with synthetic examples.

My paper is divided into four parts. In the first part, | review the problem of surface
consistency, show what it means to find surface-consistent phase functions, and discuss
the problems inherent in dealing with real data. In the second and third parts, | discuss
problems that | have encountered in implementing this scﬁeme, and how | have dealt with
them. In the fourth part, | show the results of processing some synthetic data. The first
problem was how to solve least-squares systems that involve phase; the problem stems
from the fact that while it is impossible to determine from a lone trace whether its phase at
a particular frequency is ¢, or g + 27, or ¢ + 4m, etc,, the final result will differ depending
on which of these phases is assumed to be the correct one. | believe that this problem is
now solved. The second problem is how to deal with null spaces. This problem was dis-
cussed by Wiggins et al (1976). The effects of null spaces become much more serious
when one attempts to solve the statics problem at more ihan one temporal frequency, and at
the same time, these effects become much more difficult to remove when one is dealing with

phases rather than with amplitudes. | am not sure if | have a good solution to this problem.
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Sword 20 Generalized Surface-Consistent Statics

Surface Consistency and How to Generalize It

In this section | will give a brief historical review of the problem, and show some of the
similarities and differences between my approach and previous approaches. Then | will dis-

cuss the problems in applying my generalized method to real data.

In their well-known 1974 paper, Taner et al discussed the idea of modeling static

corrections using the formula:

Ty =Si+ G+ Yyug) + (G- My. n
R 2

where i is the shot position index, j is the geophone position index, T,;J—

observed time shift at a shot-geophone position i,7, and S, G, Y, and M represent time

represents the

shifts due to shot, geophone, midpoint, and residual moveout anomalies. Tij is assumed to be

known, and an iterative least-squares procedure can be devised to find S, G, Y, and M.

In a later paper, Taner and Koehler (1981) carried this idea a step further. Suppose
that any trace F,-,J-(t) can be described as a convolution of effects due to geology, shot

position, geophone position, and offset. Then we can write:

Fii(t) = Si(t) * Gi() * Yup)(8) * Hyy) (£) 2
] 2

Going into the frequency domain, we can rewrite equation (2) as:

Fii (@) = 5i() G(w) Yy (D H gy (w) (3)
2 2

By taking the log of both sides, the equation becomes linear:

InF(w) = InSi(w) + InG(w) +In Y5 (w) + InH g -y (w) (4)

2 2
One interesting effect of taking the log is that the real part of In Fij(w) is related to the
amplitude of Fi;(w), while the imaginary part is related to the phase of Fi;(w). Thus, by
separately equating the real and imaginary parts of equation (4), we obtain two linear equa-
tions: one that describes surface-consistent amplitudes as a function of frequency, and one

that describes surface-consistent phases as a function of frequency.

Once equation (4) had been split into two parts, Taner and Koehler went on to solve the
real (amplitude-related) equation, but they did not attempt to solve the second, phase-
related equation. Instead, they made the assumption "‘that the phase component can be
approximated by a linear function of w in the frequency domain, which corresponds to a sim-
ple time shift in the time domain. In so doing, they made their problem much easier. Their

problem was now reduced to just two procedures: find the static shifts, just as they did in
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(Taner et al 1974), and find surface-consistent amplitudes as a function of frequency.

My paper generalizes the above method. Rather than making the approximation that
phase is a linear function of w, | will assume that phase can vary arbitrarily with frequency,
just as Taner and Koehler assumed that amplitude could vary arbitrarily with frequency. This
assumption leads, as | will show later, to several complications, since there are certain diffi-

culties involved in solving phase-related problems by least-squares methods.

Before discussing how to solve the generalized surface-consistency problem that has
just been posed, let's first examine what this problem means and how closely it is related to

the problems that are encountered in real data.

Imagine an idealized seismic experiment. An impulsive source at location i is set off,
and trace Uij(t) is recorded at geophone position j. The geophone produces no phase or

amplitude changes in the signal, and there are no shot or geophone statics.

So much for the ideal case. Now consider reality. The shot has some sort of waveform,
which may vary from shot position to shot position, and there are shot statics that vary with
position. The geophone is imperfect as well, introducing phase shifts and amplitude losses,
and of course there are geophone statics. Assuming that the shot and geophone effects
are reasonably linear, and that the static shifts are not dependent on the ray angle, we can
consider the shot and geophone effects to be convolutions onto the original ideal trace
Uj(t). We can then speak of the time functions S;(¢) and G;(t), which represent the
waveforms to be convolved onto the trace U;(f), so we can say that our actual data is
represented by S;(£)*G;(£)*U;(t). Note that S;(f) varies not only with time, but with shot
position as well, and that the corresponding statement may be made about Gj(t). This is
simply saying that the shot waveform and shot statics vary with the shot position, and that

the geophone impulse response and geophone statics vary with the geophone position.

So now we have justified the S;(£) and G;(f) terms of equation (4). But how do we
justify the Y, 2(f) and H_;y,0(¢) terms of (4)? Here is where equation (4) diverges
from reality. We might say that the common-midpoint term, Y(i+j),2(t), corresponds to the
waveform that would be received in an idealized zero-offset experiment at a given midpoint.
Then Uij(t) could be considered to be composed of the common-midpoint waveform after it
has undergone a normal-moveout stretching which depends on offset A (h = (i-5)/2 ), and
after it has undergone amplitude changes because of reflection coefficients that vary as a
function of angle. The amplitude variations as a function of A can probably be handled as a
convolution. The NMO stretching, however, certainly‘\‘ can not. Therefore, if we write

Ui (8) = Yyajy2(8)*Hi_jy,2(t), we are departing from reality.

SEP-35



Sword 22 Generalized Surface-Consistent Statics

We have a problem, then, when it comes to dealing with normal moveout. It might be
supposed that we could simply apply a normal-moveout correction to the data in order to
eliminate this problem. The difficulty, however, is that we would like to apply the correction
to U;;(£), but all we have to work with is the data S (£)*G;(£)* Uy (). If we apply an NMO
correction to this data, we destroy the validity of the convolution, since the NMO correction

takes the form of a time-varying stretch.

So this is the problem with using real data. On the one hand, we need to do an NMO
correction in order to determine Y(;,;),2(f). On the other hand, if we perform such a correc-
tion, we destroy (or at least distort) the information that would allow us to determine S;(t)

and Gj(t). The solution | propose is rather crude and has not yet been fully tested:

1) On a common-midpoint gather, choose a horizon to be flattened and determine its normal

hyperbolic moveout.

2) Apply a time shift to the gather, corresponding to the normal moveout at that given hor-
izon. In other words, flatten the horizon, but by applying a time shift rather than by

performing a stretch.
3) Window the data so as to look at only a short period of time around the horizon.

If the time window is not too wide, a time shift should be as effective as a stretch in remov-
ing the effect of normal moveout, thus allowing us to write with some validity,
Uij(t) = Yajy2(8)*H_jy,2(8). And since we use a time shift rather than a stretch, then if
the static shifts are not too large, we can say that the final trace equals
S;(£)*G;(£)*U;(£). Therefore, equation (4) should hold in this situation. However, if the
time window is too narrow, we will have difficulty determining the Fourier transform of the

data. The phase especially will be affected by the truncation problem (Mitrofanov, 1979).

Thus we see the problems involved in dealing with real data. But what are the possible
applications of using this procedure? One application, of ‘course, is the removal of compli-
cated statics effects; these effects may include a varying shot waveform (if the data was
recorded using an explosive source) and strange filtering effects caused by the ground
directly underneath the shot and geophone. Another possible application is the removal of
multiple reflections (Morley, 1982). 1 should note, however, that although | have mentioned
the removal of shot waveforms, | am not suggesting that this statics method could be used
to do deconvolution. When | write of removing the effect of the shot waveform, | only mean
removing the effects of a varying shot waveform. If my procedure works properly, the data
will be adjusted so that it appears to have been taken ﬁsing a non-varying, but not neces-

sarily zero-phase, shot.
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Solving for Phases by Least-Squares Methods

Now that we have seen some justificafion for doing so, let us return to equation (4) and
redefine some terms. First we define Fii’(@) =In Fij(w), and make analogous definitions for
the other terms of (4). Then we throw away the primes. Then, for convenience, we throw

away the "/ 2" parts of Y(;,;),2(w) and H(;_;),.(w). Now we can write:
Fiy(@) = S;(0) + Gi(w) + Yyy(0) + Hy_(w) (5)
But we have not considered the possibility of noise in the data. ldeally, we should write:
D) = Sy(#) * Gi(£) * ¥, ;(t) * Hy ;) + Ny(t) (6)

where Dij(t) represents the actual recorded data, and Nij(t) represents the noise on each

trace. It proves more convenient, however, to write:
D‘J(t) = Si(t) * Gj(t) * x;.;j(t) * Hi_j(t) * Nij(t), (7

because then when we go through the transformation to the frequency logarithmic domain,

we come up with this analog to (5):

which can be analyzed in terms of a least-squares problem.

Let us look at the least-squares problem that we are setting up for ourselves. At a
given frequency, our minimization problem is:

Ny =Dy = Sy — Gj — Yiu5 — Hiy; (9)

Find S-,;, C;J" Yi‘*‘j’ and Hi—j

such that }} | N;; | ? is minimized.
1.

This is relatively straightforward to do for the real pé;'t of S;, Gj, YH_,-, and H;_;. The
difficulty comes with the imaginary part. The imaginary part of D,;j(w) corresponds to the
phase in the original data at frequency w. Since multiples of 27 can be added to this phase
without causing any disagreement with the original time-domain data Dij(t), an extra ele-
ment of indeterminacy is added to the problem. Not only do we need to know which values
of 5, Gy, Y;44, and H;_; minimize equation (9), we need to figure out what multiple of 27 to
add to the imaginary part of Dy. To some extent, phase unwrapping might serve, but
although phase unwrapping will give us the phase at one frequency relative to that at
another frequency, we still must figure out the correct phase (including multiples of 27) at
our starting frequency. Thus while phase unwrapping may speed up our process once we

get started (although | have not tried this idea out yet), it doesn't solve the problem of how
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to get the phases at our starting frequency.

Taner et al (1974) use Gauss-Seidel iteration in order to solve for Sis GJ-, YHJ-, and
Hi_J—, when they are looking for simple static shifts. This is an iterative method, and | will
use a variation of it to solve the current problem. The basic idea is that in order to solve the
least-squares minimization problem, we first must solve over S;, then over Gy, then over
H;_;, and finally over ¥;,;. We continue solving over these four terms until our solution con-

verges. But what do | mean by "solving over S;"?

Let us define:

n =2 Dy = S; — Gy — Y4y — Hy;]? (10)

i
Then we want to find S; so that n; is minimized, solving for S; at one value of i (the shot
coordinate) at a time. When doing so, we assume that Gj, YHJ-, and Hi_j are known. This is
what | mean by "solving over S;". (Solving over G is similar, except that you sum over i
and minimize n;, which is defined similarly to n; above. For H;_; and Y;,;, you must change

coordinates.)

It is useful to note at this point that we can solve separately for the real and imaginary
parts of S; (and similarly for Gy, etc.). Solving to find the real part is fairly easy. Solving to
find the imaginary part is quite a bit trickier, because of the phase problem mentioned above.
Most papers dealing with frequency-dependent surface-consistent statics [(Taner and
Koehler, 1981), (Morley, 1982)] simply solve for the real part only. This corresponds to find-
ing the surface-consistent amplitude. Phase is dealt with only as an over-all static shift,
and thus is not considered to be anything other than a linear function of frequency. (Some
Soviet researchers, however, have published results that suggest that they have success-

fully dealt with the frequency-dependent phase problem (Mitrofanov et al, 1982).

In any case, let us look first at how to solve for the real part of S;, using equation (10).
The minimization problem is simple: find S; such that dn;/ 05; = 0. Differentiating equation

(10) and solving for S;, we find that
S-,; = - ZD'b - G] - )f'u_j - Hi_jJ (11)

Here NJ- means the number of geophone points j at shotpoint i. To look at this another way,

let us define

%

M’LJED‘LJ — G] - }’i+j - Hi—j’ (12)

so that Mij represents the result of subtracting the "known'' information -- Gj, },'.i+j, and
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H;_j -- from the data D;;. Then we easily see that in order to minimize n;, we must find a

value for S; which represents the average, over all data from shotpoint i, of M;:
Sy = 1. M. (13)
TSN 2 ij
J 1

This concept of taking an average will prove important when we look at phase.

When we try to find the phase (imaginary) component of S;, we are again attempting to
minimize n; in equation (10), which we will rewrite using the definition of M;; from equation
(12):

n=Y | My — Si|? (1a)
i
This equation is not accurate, however, since it pre-supposes that we know the phase of

M;;. As we have noted previously, a component of M;; (namely, D,;j) is ambiguous because

of an arbitrary multiple of 27 which can be added to it. So in actuality, we should write:

’n,;EZ lM‘tJ + 27TL1',J' - S-,;lz (15)
i

where L;; is some arbitrary integer which can vary with both i and j.

Determining L;; could be quite difficult, but fortunately it is possible to proceed without
solving this particular problem explicitly. Instead we note that in equation (15) we want to
find both an S; and an L;; that will minimize n;. Clearly, n; will be minimized when the values
of | My + 2nLy — S;| are minimized for each j. But for any arbitrary 5, j, and My, the
expression | M;; + 2L — S;| will be minimized when L; is chosen so that

—m < My + 2nL; —S; < . Thus we can rewrite equation (15) as

ny =Y | wrap(My; — Si)|? (16)
:

where wrap(z) is the function that adds (or subtracts) multiples of 27 to an arbitrary x until

—7 < wrap(z) < 7. In effect, wrap(z) is a sort of modulo (not modulus) function.

In equation (16) we have gotten rid of the ; term, so we won't have to worry about it
any more. In exchange, however, we have converted a straightforward linear least-squares
minimization problem into something a bit more complicated. Previously, n; varied smoothly
with S;, so it was not too difficult to find the S; that minimized n; for an arbitrary <. Now,
however, the n; in equation (16) is no longer smooth as S; varies. It is still continuous, but
its first derivative is not. We cannot find the absolute minimnum of n; simply by solving for
dn;/ 8S;, since there are probably a number of local minima. It is still possible to find an

absolute minimum, however, by trying various values of S; in a systematic way.
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Once | derived this technique (with the help of some extremely useful suggestions by
Jeff Thorson), | attempted to solve the Ieast-sqﬂares minimization problem, using some syn-
thetic data that | knew to be noise-free. Clearly, then, | would have a correct answer if the
N;; in equation (9) turned out to be identically zero for all values of 4 and j. 1 discovered
that | could converge to the correct answer if the initial guesses for S;, G;, Y;,;, and H; ;

were reasonably close to the correct answer, but otherwise leij |2 would converge on
.
some non-zero value. | suspect that this problem is somehow caused by the sharp discon-

tinuities in the derivative of n; and in the other analogous terms ('nj, etc.).

Since this method failed, | cast around for another way of minimizing equation (16). |
recalled that for the real (amplitude) component, n; was minimized by setting S; equal to the
average of M, [recall equation (13)]. But how could | extend this idea to to a problem

involving cyclic phases? | had the following problem:

Suppose you have a group of . phases, &, 8,, 6,,... 8,. All of these phases are in the
range — < @< 1. How would you find the average phase? Clearly you can't simply add the
phases together and divide by n. As an example: Suppose you had only 2 phases, 37/ 4
and —37/ 4 [see Figure (1a)]. The simple arithmetic average is O or 0. But obviously a

much better answer is 1. The problem gets worse as n increases.

n/ 2 n/ 2
D1 D1
m T
D2 D2
-1/ 2 ~n/2
(a) (b)

FIG. 1. Finding the average phase. (a) shows why an arithmetic average is not a good way
of finding the average phase. D1 and D2 represent two data points, and A represents their
arithmetic average. (b) show that a better average is found by finding the center of mass
of D1 and D2, and letting the angle of that point be the average phase.
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From Figure (1b) we see a way of finding the solution: plot the phases as points on a
circle, and find the average position (i.e. the center of mass) of all these points. Compute
the phase of the average position relative to the origin, and this will serve as the "average
phase'. | tried applying this method to my iteration problem. For a given i, | plotted all the
relevant values of };; on a unit circle, and found the phase of the center of mass. | set 5
equal to this phase. 1 did this for all values of i. Then | did the analogous thing with §;, etc.
The process converged! Slowly but inexorably, as | repeatedly iterated over S, G, H, and

Y, N;; went to zero for all values of 7 and 7.

| have since found that more iterations are required for convergence as the size of the
problem increases (i.e. as iy and oy increase), and as the noise level increases. Of
course, as the problem grows larger, the time required per iteration also increases. It may be
that for problems beyond a certain size, or for a signal-to-noise ratio below a certain value,
convergence will never occur, and the problem will become insoluble. In addition, | am no
longer solving an exact least-squares problem, that is, if noise is present, | am no longer
exactly solving the minimization problem given in equation (9). In fact, | am not really sure
what problem | am now solving. This is the only method | have gotten to work, however.
Methods based on minimizing the L, norm (least-squares) and the L, norm (the median) both

fail to converge to zero.

The Problem of Null Spaces

It might seem that the generalized frequency-dependent surface-consistent statics
problem has now been solved. Given D; at a given frequency, we are able to solve for both
the real and imaginary parts of S;, G;, Yi4j, and H;_;. We should now be able to find these
surface-consistent components for all values of w, exponentiate in order to undo the loga-
rithm that we took previously, and transform into the time domain. Then we could deconvolve
the data by applying the newly-found S;, Gj, and Hi_J— waveforms, and thus remove the

statics. Unfortunately, it's not that easy. We now encounter the problem of null spaces.

| will not discuss the general null space problem here; a good discussion of the problem
is given by Wiggins et al (1 976). Instead, | will merely give the result. Using a method simi-
lar to that given in the appendix of the paper by Taner et al (1974), it is possible to show
that if S;, G, Y;4;, and H;_; represent a good decomposition of D,;, that is, if they minimize

N Ny | 2, then an equaily good decomposition is given by:
i =
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S,”=S; + K§ + iKY + i*K3

Gy + K§ + jK¥ + j*K§ a7

0
I

Yivj” = Yiej + K§ + G+)KT + (L+5)RKE
Hiy' = Hy_j + K§ + G—)K¥ + (i—j)* k¥

There are several several equations relating the various constant X factors. Only six of
these factors turn out to be independent; one possible listing of the independent factors is:
K‘g, K§, K‘SI, K‘f, Kf, K‘g. As an example, it should not be too difficult to see that
K§ + K§ + K§ + K§ must equal zero if the new decomposition is to be as valid as the old

one, and thus that Kg can be considered to be dependent on the other three constants.

The six constants X5, K§, K&, k¥, K¥, K§ can be considered to be the components of
our null space. These six constants are entirely arbitrary, and once they have been fixed,
they can be used to determine the other six constants in equations (17) above. There are,
in fact, other components of the null space, caused by truncation effects at the ends of the

data set, but we are not concerned with them here.

One trouble with the nuli-space components is that when we use conventional Gauss-
Seidel iteration, they do not go away. As Wiggins et al (1876) pointed out, the null space
components depend only on the choice of initial vectors 5;, Gy, Yi,;, and H;_;. The simple
iteration scheme that | have described will not make the null-space components grow, but
neither will it make them go away. Minor variations on the Gauss-Seidel iteration method
have been suggested in order to minimize the null-space terms (Taner et al, 1974), but
these, | have found, are not effective in reducing the null space in the phase component of
the data. The problem, presumably, is related to those multiples of 277 that plagued us in the

previous section of this paper.

Before | describe my (not entirely satisfactory) aﬁproach to solving the null-space
problem, let us examine why null spaces can cause significant difficulties in multi-frequency
data. Suppose that we have a data set with no static shifts and with a shot waveform that
looks like a delta function. Then S;(t) should look like Figure (2a). Now suppose that some
of our null-space components become non-zero. For instance, if K‘g takes on one non-zero
value for high frequencies, and a different non-zero value for low frequencies, then Figure
(2b) is the result of plotting S;”. If X5 now takes on one non-zero value for low frequen-
cies, and another for high frequencies, then Figure (2€) is the result. Note that this is a
very simplified example. In reality, every different frequency can take on a different value
of K‘g and K*f. Even in this simple case, however, we can begin to see problems. For

instance, in Figure (2b) it is possible to remove the effects of the null-space component by
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simple deconvolution, but in Figure (2c), deconvolution clearly won't be sufficient. And keep
in mind the fundamental difficulty, which is that the functions in Figures (2b) and (2c¢)
satisfy the minimization condition (8) just as completely as the function in Figure (2a) does.
We need to come up with an additional condition for S;, (7, etc. to fulfill, and we need to find

some scheme that will force S;, Gj, etc,, to fulfill this condition.
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FIG. 2. The effect of null spaces. (a) shows the ideal result. (b) shows the effect when
null-space component K, varies irregularly with frequency, and (c) shows the effect when
K, varies irregularly as well.

I have come up with a condition that | can't really express quantitatively, and an itera-
tion scheme that seems to work but that isn't completely convincing. Let's start with the
condition, which | will call (probably incorrectly) the parsjmony condition: we want the S, (&,
Y, and 4 components to look (in the time domain) as mﬁ‘ch like delta functions as possible.
Notice, first of all, that this condition, unlike the minimization condition (8), looks at the
entire waveform rather than at one frequency at a time. This is good, since as long as we

treat each frequency independently, we are unlikely to get something that will look good
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when we go back to the time domain. Next, notice what it will not do. Even in the case
where there are no static shifts, our parsimony condition does not guarantee that S;(¢) will
end up looking like Figure (3a). Figure (3b) or (3c) is just as likely to result. These latter
two figures clearly show the presence of null space components, but the important thing is

that these null space components no longer vary irregularly as a function of frequency w.
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FIG. 3. Results of suppressing the null-space components. (a) shows an ideal result, (b)
shows the result when null-space component K varies regularly with frequency, and (c)
shows the result when K, varies regularly as well.

Now for the conditioning scheme. First of all, note that it differs according to which
component (S, G, Y, or H) is being conditioned. This results from the fact that some of the
null-space components are dependent on other comp\onents. Recall that | chose the
independent components to be: Kg, K‘?, K‘g, Kg, KIG, aﬁ\d Ké’. This means that | must find
three components for each frequency of S, two for each frequency of (7, one for each fre-
quency of /, and none at all for Y. But since | am not sure how to solve for it, | am going to

ignore the Kg term. Also, note that all of the K terms have a real and an imaginary part,
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corresponding to amplitude and phase respectively. | don't intend to discuss the real (ampli-
tude) part, since removing the amplitude component from the null space is presumably fairly
straightforward if one uses the variation on the Gauss-Seidel method that was mentioned in
the appendix of the paper by Taner et al (1974). With these things in mind, let's see how

to go about solving for K5 and K3.

Let us first consider the case where the K component has already been removed
somehow, and look at how to go about solving for Kg. Recall from Figure (2b) that this is
analogous to deconvolving the data. We need to find a single Kg for each frequency, and
when this component is subtracted from each trace (in the log-frequency domain), the resuit
should be a set of traces that are a little bit more deconvolved than they were before. Thus
we want to look at all the traces at a given frequency, and come up with a Kg that, overall,

best compresses the set of traces that make up S

One naive approach might be to look at all the traces at a given frequency, and meas-
ure the difference in phase between each trace and an ideal zero-phase trace. Then it
would be possible to average all these phase differences, and thus come up with a value for
Kﬁg. The problem is that a zero-phase trace would be centered at =0, and it is not very
reasonable to assume (as we are) that all of the data traces can be forced to look like
wavelets centered at £ =0. In other words, it is assumed in this method not only that all of
the 5; traces were convolved with the same wavelet, but that they all have the same time-
shift as well. | have thus come up with a deconvolution method that is based on the

assumption that all of the traces are identical. This is not too useful.

The previous method can be modified to be a bit more realistic. Again we look at each
trace at the given frequency, and again we measure a phase difference at each trace. This
time, however, we measure the phase difference differently. Previously, if the phase of
trace l at frequency wy were written as ¢;(wg), we would say that the phase difference for
this trace was @;(wg) — 0 = ¢;(wy), since we were finding the phase difference between
the trace and a zero-phase wavelet. But now let us write the phase difference as
¢i1(wo) — iwpl) maz, Where L} maz 1S the time at which trace [ has its maximum value [See Fig-
ure (4)]. In other words, previously we were attempting to make all the traces look like
delta functions at the origin. Now we are again trying to make all the traces look like delta
functions, but with the spike located at what is currently the maximum-valued point on each
trace. Once the shifts are found, again we take the average shift, call it Kg, and apply it to
each of the traces. This method is iterative; as we sf\iift each frequency component, the
maximum point of each trace will probably move, thus affecting how much shifting will be
applied to the next frequency component. In the deconvolution test cases that | have tried,

it has been necessary to run the traces only once through the whole range of frequencies.
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FIG. 4. Finding the phase shift on a trace. In this figure, the lower trace represents a
single-frequency component of the upper trace. We want to see how much we need to shift
the phase at this frequency in order to make the upper trace spikier. To find the desired
phase shift at this frequency, we measure the distance between the maximum of the original
trace (¢, ,noz) and a peak on the single-frequency trace. This will allow us to find g,.

In the case where K*f is a problem, one more refinement must be added to the method.
We simply averaged the phase shifts in order to find KOS (and | should note that this averag-
ing was performed using the '"center of mass of points on a circle’” method), but now we
want to find an additional phase shift that varies linearly with shot position. The problem, of
course, is that the measured phase shifts all fall in the range —7 < Ay < 7, so that finding a
linearly changing shift is difficult if the shift per shotpoint is too great. The answer to this
problem, fortunately, is simple. The question is, given a series of phase shifts ¢;, how do
you find a linear shifting term X such that ¢, ~ wrap(lK) for all values of [? The difficulty is
caused by the presence of the "wrap' function, so we multiply by i = V=1 and take the
exponential of both sides. Then the problem becomes, find K such that
exp(ip,;) ® exp(iK'l). Now the "wrap" function has gone away, and we have a problem that
can clearly be solved by performing a Fourier transform over .. Remembering that [ is a term
that varies with position, we now have an algorithm for finding K: take each ¢;, multiply it by
i and exponentiate it, take the spatial Fourier transform over the series of exponentials of
¥;, and, in the spatial frequency domain, find the positior} of maximum value. The spatial fre-

quency represented by this maximum position is simply the X that we have been looking for.
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Test Data

Now that we have some idea about how to go looking for frequency-dependent
surface-consistent statics, let's take a look at how these methods work on synthetic data.
Figure (8) shows the time-domain wavelets S;, G;, Yi45, and H;_; that were used to gen-
erate the synthetic data from the formula Dy(f) = S;(¢) * Gj(L) * Yy, ,;(¢) * H,_;(£).
Notice that the wavelets represent delta functions with varying amounts of static shift
applied. The resulting synthetic data was put through a Gauss-Seidel iteration, using as the
order of iteration S, G, H, Y This gave the results in Figure (7) after 1 iteration, and gave
the results in Figure (8) after 16. Then the S; panel from Figure (8) was put through the
null-space suppression procedure, and Figure (9) was the result of five iterations of that.

Figures (10-12) are the analogous results obtained using the iteration order Y, S, G, H.

Figure (12) deserves some study, because it points out a problem in my null-space
suppression method. Compare Figures (8) and (12), and note how much sharper the
wavelets in Figure (9) are. The problem in Figure (12) stems from the fact that my suppres-
sion method does not seem to work very well at higher frequencies. The S; wavelets in Fig-
ure (8) already had their high-frequency components in about the right spot. The wavelets
in Figure (11), on the other hand, did not, and my process did not do a very good job of
correcting this problem. | am not really surprised, because as far as | know, there is no
theoretical explanation of why my method should work at all, and thus | can make no predic-

tions of when it should break down.

Conclusions

The generalized frequency-dependent surface-consistent statics problem can be
solved, although at some cost in computer time. At this point, the question is not one of
developing the method, but one of refining the method so that it works better and so that it
corresponds better with the problems encountered in real data. In the former category, the
problem of suppressing the null-space components still needs to be dealt with using some
approach that has a sound theoretical basis. In the latter category, the problem of residual
moveout has not been dealt with at all. Probably equation (5) should be reformulated so
that it includes this effect. Finally, it remains to be seen whether there are applications

that can justify the large amounts of computer time that this method requires.

b
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FIG. 6. These are the S, (7, ¥, and H components that were used to generate the synthetic
data.
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FIG. 7. These are the S, G, Y, and H components found by the the least-squares program
after 1 iteration in the order S, G, H, Y. Note the wraparound effects on the time axis in
this and the following figures.
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FIG. 8. These are the S, (7, Y, and H components found by the the least-squares program
after 16 iterations in the order S, GG, H, Y.
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FIG. 9. This is the S component from the previous figure, after 5 iterations through the
null-space suppression program.
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FIG. 10. These are the S, G, Y, and H components found by the the least-squares program
after 1 iteration in the order ¥, S, G, H.
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FIG. 11. These are the S, G, Y, and H components found by the the least-squares program
after 16 iterations in theorder ¥, S, G, H.
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FIG. 12. This is the § component from the previous figure, after & iterations through the
null-space suppression program. Notice that these events are not as sharp as those in Fig-

ure (9).
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