Lateral Velocity Anomalies - Model Study

John Toldi

Introduction

We described in SEP-32 (Rocca and Toldi, 1982), a linear convolutional theory that
relates perturbations in interval slowness to the resulting perturbations in stacking slow-~
ness. The goal of this method is the determination of lateral slowness variations; thus, the
ultimate use of the method will be in the inversion of stacking slowness anomalies for the
corresponding interval slowness anomalies. As such, this method is intended as an alterna-
tive to the linearized traveltime inversion methods, and does not require their often costly
and difficuit step of determining traveltimes. Instead, stacking slownesses are used -- rou-

tine byproducts of a standard seismic processing flow.

In this paper | continue the discussion of this linear theory. The first part of the paper
contains a review and discussion of the key points of the theory presented in SEP-32. |
present, in the second part of the paper, a depth model containing lateral slowness
anomalies. For this model, | derive the stacking slownesses predicted by the linear theory,
which | then compare with those derived by fitting ray-trace generated traveltimes. Finally, |
present a general discussion of the inversion process, alc;;lg with the inversion of the ray-

trace derived stacking slownesses.

Review of Theory

The derivation of the linear operator relating interval slowness anomalies to stacking

slowness anomalies consists of two separate parts (note: slowness = Ezj—it_)' The first
ocily

part is purely statistical: given a particular best leastsquares fit line in £2 — z2 space,
determine how the slope of that line (the stacking slowness squared, = w?) would change
if one of the traveltimes (actually ¢?) were changed by a small amount. The second part of

the derivation contains the assumptions about the medium: given a medium for which the
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stacking velocity is truly the rms velocity (i.e..velocity varies as a function of depth alone,
and offsets are not too large), determine the eéffect on the traveltimes (again actually t?) of
a small localized change in the interval slowness. By connecting the equations derived in
these two steps, we obtain the stacking slowness response Awg, for a particular reflector
at depth z, to an impulse of anomalous interval slowness Aw,, of thickness Az,, and width
Ay = midpoint interval, located at depth 2zg,. Finally, by looking at the response to a dis-

tribution of such anomalies in midpoint iy, we derive the following linear convolutional equa-

tion:
[ | 2 ?]
_ 15 2y| _ 12 |2y] _
Moy (y,2,24,) = e 2 anlls[ L] 1”.1 t o 7 } * Awi (Y,245) &)

F(y,z ’za'n,) * Awin(yazan)

where from Figure 1, L = cablelength, and

, . (z—za‘n)
L” = effective cable length = ——Z—L
for a constant velocity background. The only change required in the impuise response

F(y,z,z,,) for a depth variable background velocity, is that L’ would be a more complicated

function of depth.

N

an

FIG. 1. Geometry for constant background velocity.
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Due to the linearity of equation (1), we .can simply superpose the contributions of all
anomalies from the surface down to the depth of the reflector. Thus, for the anomalous
stacking slowness determined for one reflector,

z =z

bwg(zy) = [ F(2,20.y) * dwin(y,2en) dzgn. (2)
=0

In actually implementing the theory, we cast the problem into the spatial frequency
domain. Thus, transforming the impulse response F(y,z,24,) over midpoint y to Fi(K,z,z

KL (2-24,)  _L°
2 2z _KZ’

an):

we find

then using a dimensionless wavenumber &k =

162 Az,, [[ . o ] ]
T2kt l(2+20)lc + (—84c —-6)k* + 72c|sink
F(z,2g,k) = 1 (3)
+ [(6+100)I«c3 — ?2clc]cosic1
2
where ¢ =
427
Zan =z
Mog(z,k) = [ F2,2qn.k) Dy (k,20,) d2gy. (4)
Zpn =0

Equations 1,2,3 and 4 were derived in SEP-32 (Rocca and Toldi,1982).

Model Study - Forward Problem

It is interesting to examine how well the operator handles the forward problem, before |
proceed to an example of the inversion for interval slowness. The two key assumptions of
the theory outlined above are that the anomalies not bg,too large in magnitude ( i.e. the
linearization is valid) , and that the hyperbolic moveout relation be valid for the background
velocity distribution. In choosing a depth model for this model study, | tried to satisfy these
key assumptions: if the theory doesn't work when you do satisfy the assumptions, you can

hardly expect it to work in a more general situation.

The depth model shown in Figure 2 is an adaptation from Pollet (1974). The back-
ground velocity distribution clearly satisfies the hyperbolic moveout equation, provided the
shot to geophone offsets are not taken to be too Iarge. Whether the magnitude of the
anomalies is too great for the linearization to still be valii:l, is not as easily determined. Later
in this section, | will show the results derived by increasing the magnitude of the anomalies,

which does degrade the fit of the forward problem.
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FIG. 2. Depth model containing three low velocity zones. Stacking velocities were deter-
mined for the reflectors at depths 3000, 4000, 6000, 7000, 8000, 10000 feet.

Using a ray-tracing algorithm, | generated traveltimes for a standard seismic survey of
16 fold coverage (cable length = 4800 feet) over this depth model. | then determined the
stacking slowness for each of the six reflectors by fitting a line in £ — z® space. The
stacking slownesses predicted by equation (4) were derived by first forming a grid of
anomalous slowness values for the model, [i.e. getting Aw,, (y,2,,)], performing a Fourier
transform over y, then performing the required multiplications and integrations to get stack-
ing slownesses (Awg(k,z)). Finally, with an inverse Fourier transform over k, | get the

predicted stacking slownesses Aw,(y,z) for the six reflectors, as a function of midpoint

coordinate.

Figures 3 and 4 show a comparison of the ray-trace Eierived stacking slownesses with
the stacking slownesses derived through the linear operator, for two different background
velocity distributions. In Figure 3 the operator used a constant velocity background, while in
Figure 4 it used a velocity distribution that was linear with depth. For a general depth vari-
able velocity, the effective cable length L’ is determined for a particular reflection by trac-
ing the ray corresponding to a shot to geophone offset equal to the cable length 7. The ray
tracing itself can be done analytically, provided the takeoff angle is known. Only for simple
background velocity distributions, such as linear with de€pth, can this angle be determined
analytically; more generally it must be determined through iterative ray~tracing. One such

two-point ray-tracing problem would need to be solved for each reflector.
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Returning to Figures 3 and 4, we see that either choice of background velocities pro-
vides a very good fit with the ray-trace derived slownesses. The differences due to the
differing background velocities are largest for the ségments of the slowness curves most
strongly influenced by the large anomaly at midpoint coordinate 5000, where the depth vari-

able operator clearly provides a better fit.
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FIG. 3. Two sets of slowness curves determined for the six reflectors of Figure 2. The dot~
ted lines represent the curves determined with the linear operator of equation (3), the solid
lines the curves determined by fitting traveltimes from ray tracing. In this figure the forward
operator used a constant background velocity.

To study the limits of validity of the linearization, | increased the magnitude of all three
anomalies, by decreasing the velocity for each one by 1000 ft/sec. Figure 5 shows the
same sort of comparisons as did Figures 3 and 4, namely stacking slownesses derived
through ray tracing, compared with stacking slownesses ;:Ierived through the forward linear
operator (here the background velocity was taken to be depth variable). Although the basic
shapes of the two sets of curves compared in Figure 5 are still the same (the peaks and
troughs occur at the same locations), their amplitudes are clearly quite different. In particu-
lar, the fit in the region dominated by the large anomaly at midpoint 5000 feet is much poorer
than it was in any region of either Figure 3 or 4. Because the large anomaly differs in velo-
city from the surrounding material by an amount comparable to that of the other anomalies in
the original model, we can infer that the misfit is primarily the result of the magnitude of the

anomalous traveltime, rather than the anomalous velocity alone.
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FIG. 4. Two sets of slowness curves determined for the six reflectors of Figure 2. The dot-
ted lines represent the curves determined with the linear operator of equation (3), the solid
lines the curves determined by fitting traveltimes from ray tracing. In this figure the forward
operator used a background velocity that increased linearly with depth.
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FIG. 5. Two sets of slowness curves determined for the six reflectors of Figure 2, only now
with all anomalous velocities decreased by 1000 ft/sec. The dotted lines represent the
curves determined with the linear operator of equation (3), the solid lines the curves deter-
mined by fitting traveltimes from ray tracing. In this figure the forward operator used a back-
ground velocity that increased linearly with depth.
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Model Study - Inversion

With the wavenumber & acting as a parameter, there will be one equation like equation
(4) for each reflector, that is, an integral of interval slownesses down to the depth of the
reflector. Thus, if we replace the integrai by a sum, the system of linear equations can be

expressed compactly as
Mug(z k) = Flz,24,,k) Miy,(k,z,,) dzg,, (5)

where now F(z,z,,,k) is a matrix operator, with dimensions number of reflectors x

number anomalous levels, and Aﬂ)a(z,k) and A'J)m(k,zan) are vectors.

Because of the existence of zeroes in the operator F, and the possibility that we might
want to solve for a different number of anomalous levels than reflectors, equation (5) can-
not be inverted directly. For the work presented here, | have chosen to form the generalized
inverse from the singular value decomposition of F. The main advantage to using this method
is that it quite easily and naturally allows for control over the eigenvalues in the inversion.
Because the matrices involved are really rather small, the usual disadvantage of the method
(that the formation of the necessary eigenvalues and eigenvectors can be quite time con-

suming) is not a serious consideration in the present work.

Following Aki and Richards (1980), we can decompose F as follows:

K

A0

F = (UyUo) | ¢ o

) (6)

where U and V are the eigenvectors of the data and model spaces respectively, v signifies
the transpose of V, and A, is a diagonal matrix of nonzero eigenvalues. Up is the source of
the discrepancy between the observed data and the prediction by the operator F, while V,
is the source of the nonuniqueness in determining the model from the data. The generalized

inverse operator is simply
Fg! = Vp Ayt Up. (7)

By limiting the magnitude of the values of A;!, we can suppress the contributions of eigen-
vectors with eigenvalue less than a given value. Thus, we can increase the reliability of our
results, albeit at the expense of the resolution. The advantage to using the singular value
decomposition approach becomes apparent at this point: through the explicit formation of

the matrix A,, we can very easily and flexibly control the tradeoff between resolution and

p!
reliability.

Before proceeding to the examples of the inversion, | should make one final note. So

far, the implication has been that one would want to use all of the wavenumbers in the
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inversion. There are both practical and theoretical reasons why oné might want to do the
inversion only for the smaller wavenumbers.. One system of linear equations (of the form of
equation (5)) must be inverted for each wavenumber. Thus, from a practical point of view,
the execution time can be limited directly by inverting only for a limited number of
wavenumbers. Indeed, in the various inversion examples that | attempted, the large
wavenumber components of the slownesses were so much lower in amplitude than the small
wavenumber components that their cpntributions were minimal. In addition, ray theory, on
which this entire stacking velocity approach is based, is theoretically applicable only when
the seismic wavelengths are short compared to the wavelengths of the features being
examined. Thus, for the iarge wavenumber components of the anomalies, diffraction effects,
rather than simple traveltime effects, will dominate. In all of the examples which follow, |
used only the 30 smallest wavenumbers in the inversion. The largest wavenumber that |

used corresponds to a spatial wavelength of approximately 900 ft.

In the first inversion example, | inverted the ray-trace derived stacking slownesses for
the original survey (with a cable length, [, of 4800 feet). For easy reference, the depth
model is repeated in Figure 6. Note once again that | used the reflections from depths 3000,
4000, 6000, 7000, 80000 and 9000 feet. In this, and all of the subsequent inversion
examples, | inverted for 40 anomalous depths. The entire system is thus an underdeter-
mined one (more unknowns than knowns), yet the generalized inverse allows us to extract

those components which can be determined.

Figures 7a and 7b are two views of the anomalous interval slownesses resulting from
the inversion. The main features of the inversion are quite evident in either view: all three
anomalies have been correctly found to have positive slowness (i.e. negative velocity
anomalies), and have been properly positioned. While the anomalies are quite well resolved in
the lateral direction, they seem to be smeared out in depth between the nearest reflectors.
This smearing is particularly evident for the deepest anoh;aly. In the original depth model it
was about 200 feet thick, at a depth of about 5000 feet; in the inverted depth model it is
bounded sharply at 4000 and 6000 feet, which are the depths of the nearest reflectors
used in the inversion. For the shallower anomalies the depth resolution is not completely
determined by the location of the nearest reflectors, although the influence of the shal-
lowest reflector (at depth 3000 feet) is quite evident in Figure 7b. The details of the depth

resolution will become much clearer after some of the subsequent examples.

X
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FIG. 6. Depth model containing three low velocity zones. Stacking velocities were deter-
mined for the reflectors at depths 3000, 4000, 6000, 7000, 8000, 10000 feet.
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FIG. 7. Anomalous interval slownesses, resulting from the inversion of ray-trace derived
stacking slownesses (cable length = 4800 feet). a) Cortour plot. b) Hidden line drawing.
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The maximum value of Ap~1 allowed in the inversion must be chosen carefully. This
parameter is similar to the stabilization factor commonly found in wavelet deconvolution algo-
rithms. The need for this parameter arises from the fact that components of the model exist
that are very weakly passed by the forward operator. Thus, in the inversion, the correspond-
ing components of the data space should presumably be greatly magnified. This would, of
course, also greatly magnify any noise present in those components of the data space.
Ideally, then, the choice of maximum yalue of Aj;1 would be based upon an estimate of the
noise level. In practice, we do not know a priori what constitutes signal and what consti-
tutes noise; we thus are lead to an empirical choice of stabilization factor. The specific form
of this stabilization or damping parameter that | used was directly tied to the magnitude of
the smallest eigenvalue of the inverse problem, i.e. (A YDpin - ( Note that this eigenvalue
corresponds to that eigenvector most easily passed by the forward operator, and hence
least in need of magnification in the inversion.) Thus, a damping parameter of .05 means that
no eigenvector was magnified by more than 20 times the eigenvector corresponding to
(>\~1)m'n .

Beginning with Figure 7 and ending with Figure 9, we see the effect of decreasing the
damping factor from .075 to .05 to .01. Particularly in going from Figure 8 to Figure 9, we
see the appearance of additional peaks of anomalous slowness. Only our knowledge of the
original depth model tells us that these peaks are spurious. By decreasing the amount of
damping in the inversion, we discover additional features in our inverted depth model; the
tradeoff is that we have less confidence in whether these additional features are real. Or,
by reversing the argument, we can say that by increasing the amount of damping, we may

lose some features, but that we will be more confident of those which remain.

The total cable length L is a very important parameter in this stacking slowness inver-
sion method. Loinger(1983) discussed in detail its implicatipns for the forward problem, the
most important being that the anomalous stacking slowness response decreases in amplitude
and becomes smoother as the cable length increases. Increasing the cable length also has
important implications for the depth resolution in the inverse problem. To study these
effects, | once again generated traveltimes by ray-tracing through the depth model of Figure
2, this time with a cable length of 9600 feet (twice the previous value). Figure 10 shows
the results of inverting the corresponding stacking slownesses (a damping factor of .075
was used in the inversion). The basic features are much the same as those found with the
short cable: all three anomalies have been correctly fouhd to have positive slowness and
are properly positioned. The diagonal lines (seen particularly well in the contour plot of Fig-
ure 10b), however, were not evident in the short cable examples, nor was the large shallow

anomaly near midpoint 5000 feet as clearly resolved in depth as it is here.
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FIG. 8. Anomalous interval slbwnesses, with damping factor = .05. a) Contour plot. b) Hidden
line drawing.
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FlG. 9. Anomalous interval slownesses, with damping factor = .01. a) Contour plot. b) Hid-
den line drawing.
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FiG. 10. Anomalous interval slownesses, with damping factor = .075, for cable length =
9600 feet. a) Contour plot. b) Hidden line drawing.

The previous example suggests quite strongly the way in which the depth resolution
depends on the cable length. An even more enlightening way to look at this effect, and
indeed to gain a better understanding of the depth resolution in general, is to look at the
inversion of the stacking slowness curves created through the forward operator. Given the
good fit between the ray-trace derived stacking slownesses and those created by the for-
ward operator, we should expect the corresponding inverted results to also resemble one
another closely. As will be seen presently, this is certainly the case. On the other hand, by
focusing our attention on the results of running the operat&r forward, then backward, we can

be more certain that we are looking at the intrinsic limitations of the operator itself.

Thus, Figure 11 shows the results of inverting the slowness curves derived through the
forward operator, for a cable length of 9600 feet. A comparison with Figure 10 shows that
the inverted interval slownesses are indeed much the same as those derived from the ray-
trace results. Aside from the obvious difference that the results of inverting the forward
operator data are less noisy, the most notable new feature of Figure 11 is the absence of
the any buildup of amplitude between depths 7000 and 8000 feet. (Compare particularly
the contour plots ,Figures 10a and 11a). Thus, when the data fit the model perfectly, the
inverse operator is able to limit the anomalies to be between the appropriate reflectors. In

the more realistic case of the data fitting the model only approximately, some components of
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the data will seem to the inverse operator to be consistent with anomalous interval slowness
at other depths (e.g. the extra amplitude in the interval slownesses of Figure 10 between
7000 and 8000 feet).

The strong diagonal lines first seen in Figure 10 are also clearly evident in Figure 11.
Particularly striking is the "v' pattern, which outlines the bottom of the large shallow ano-
maly at midpoint 5000 feet. This effect quite clearly arises from the existence of raypaths
which entirely undershoot the anomaly. Becéuse such raypaths sense no anomalous material,
they provide a boundary to the region which contains the anomaly. The effect is further
clarified by returning to the short cable experiment. Figure 12 contains the results of invert-
ing the forward operator derived stacking slownesses for a cable length of 4800 feet. Here
the cable is simply too short too allow any undershooting of the anomaly, thus the absence
of the clear ''v'' pattern. What resolution there is of the lower limit of the anomaly comes
from the raypaths which have, for example, the downgoing leg traveling diagonally under the
anomaly, but then the upgoing leg necessarily traveling through the anomaly. The net result
is that the bottom of the anomaly gets bounded by a more steeply dipping and less sharply

defined line.

A similar story applies to the resolution of the top of this large shallow anomaly. For the
long cable case (Figure 11) there are raypaths which travel entirely above the top of the
anomaly. Thus, precisely as for the bottom of the anomaly, these raypaths will have sampled
no anomalous material, the net effect being improved resolution of the top of the anomaly.
For the short cable case (Figure 12), there is no such constraint on the top of the anomaly.
Indeed, a glance at the original depth model (Figure 6), shows that the anomaly is so shallow
and broad that there is a region, for the short cable case, that is not sampled by any ray-
paths which do not also pass through the anomaly. The resulting effects are quite easily
seen in Figure 12: the anomaly has a central region which is bounded above only by the sur-

face.

The same raypath considerations apply equally well to the other two anomalies. The
shallowest anomaly has a somewhat squarer shape for the short cable than it does for the
long cable. Once again, this can be attributed to the short cable experiment's lack of ray-
paths slanting closely under the anomaly. For the deepest anomaly, the effects are more
subtle. For either choice of cable length, the basic shape is the same: the anomaly has
nearly vertical side boundaries, and is bounded above and below by the reflectors at 4000
and 6000 feet respectively (recall that the reflector at depth 5000 feet was not used).
Neither of the cables is long enough to provide raypaths which deviate far from vertical for a

reflector at this depth. This clearly results in nearly vertical sides for the inverted anomaly.
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FIG. 11. Anomalous interval slownesses, resulting from the inversion of stacking slownesses
from the forward operator, for cable length = 9600 feet. a) Contour plot. b) Hidden line
drawing. s
midpoinmt Py 1000 F1 . #
1 =2 = = =] 11 121S 17 19 f
a ,
2 A\,_

N
o
0
nw ?~W\Y“\.\
’ S=—S¥
807 ;-h\/
0
AR
04 o & i0 16 ag
- o

FIG. 12. Anomalous interval slownesses, resulting from the inversion of stacking slownesses
from the forward operator, for cable length = 4800 feet. a) Contour plot. b) Hidden line
drawing.
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We can, however, carry the analysis somewhat beyond a discussion of the basic shape
of this deep anomaly, and look at some of its finer details. Whereas the anomaly derived
from the short cable experiment has truly vertical sides, the anomaly for the long cable
exhibits a broadening with depth. This agrees well with the fact that the anomaly actually

began below 5000 feet in the original depth model.

Although the discussion of the depth resolution dealt with the results derived through
inverting the output of the forward operator, a glance through the earlier ray-trace derived
examples shows that they contain most of the same features. It is interesting that raypath
considerations were so successful in explaining the observed results, in that precisely the
same considerations would apply to a discussion of the resolution of anomalies in a travel-
time inversion. Thus, even though the stacking slownesses are a statistical average of the
traveltimes, we are able to extract the same information about the depth distribution of

slowness as from the traveltimes themselves.
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