CHAPTER i

Deformations of CMP Gathers with v(2) To Hyperbolas

3.1. Inmtroduction.

Velocity in the earth varies with depth even when there is strong lateral
continuity. In most situations this velocity variation is slow, seismic ray—paths
remaining straight for all reflections arriving within cable spread. However, sharp
velocity discontinuities near the surface, coupled with long cable spreads, invali-
date the small propagation angle requirement for shallow events (vertical
two—way traveltime being less than direct arrival to the farthest offest. Schuitz,
1980). Because several important seismic data processes, such as hyperbolic
velocity estimation and Stolt's imaging, require a near constant velocity wave-
field, we introduce a process to deform CMF gathers with some velocity estimate

7 (z) to hyperbolas.

To define the transformation, consider a Snell trace. It is defined by all
points in a seismic gather that are associated with a fixed Snell parameler p.
In the particular case when velocity is constant, the Snell trace becomes a
straight line with slope h/t = pvz in time—offset coordinates. We refer to this

line as a radial trace.

If we transform seismic data for a stratified earth from Snell trace space to
radial trace space, it has the the equivalent effect of mapping non—hyperbolic
seismic arrivals into hyperbolic arrivals. The transformation is done in two passes.
First we need to get an estimate of the stratified velocity function ¥(z) and
transform the data from offset—time coordinates into Snell parameter—depth

coordinates. Second we can use a replacement constant velocity v and
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FIGURE 2.1. Mapping to (p,z) space. (a) Synthetic CMP gather. (b) Transfor-
mation to (p,z) coordinates with constant water velocity, the first reflector has
been flattened out. There is a stretch of the wave-—form with p, but the first ar-
rivals are independent of p. As expected for the second reflector, we get
p —depth dependence. In (c) we have used the correct velocity for the second
event. Now arrivals for the first two events are independent of p. There is
stretch of the wave—form with depth and the third reflector is curved. In (d) we
used the correct velocities for the three reflectors, this has flattened out all the
pre—critical reflections. The transformation requires the image at post—critical
reflections to become vertical. The p—depth dependence when there are errors
in velocity can be exploited to estimate velocity interactively layer by layer.
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transform the data from Snell parameter—depth coordinates back to offset—time
coordinates. Since the second transformation is done with constant velocity, we
can invert the ray equations analytically, with the advantage that the process

can be done in a single pass, without need to store an intermediate (p, z) space.

We expect this transformation to be particularly useful in areas where we
can predict with certainty a sharp discontinuity in the velocity function, for
example the interface between a water layer above and a hard bottom below.
The transformation to radial trace space will honor Snell's refraction law at the
sea—floor—sediment interface. When we do not have good information about the
velocity function, the method can be applied iteratively. It will then converge to

the true velocity.

3.2. Transformation to (p,z) space with 4(z).

To define a transformation from stratified to constant velocity wavefields,
two steps are needed. First, it is necessary to use an estimate of the velocity
function ¥(2) and go to a space where the wavefield depends on depth only.

Second, we need to regenerate the original CH P geometry (offset—time).

With the ray equations derived in chapter (il), we can define coordinates
independent of offset when the exact velocity function is known. A suitable

choice is ray—parameter p for lateral coordinate and the depth z.

From chapter (l1), the group velocity equations for the exact acoustic wave

equation are

2

——Z’; - (2.1a)
1 — 2,,2Y1/2

———‘z = u g”) (2.1b)
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FIGURE 2.2. Marine data in (p,2) coordinates. Constant 7. (a) Marine CMP data,
square—root gain applied. (b) Transformation to (p,z) space with constant water
velocity v = 14560 m/sec. Primaries bend upwards because we are underes-
timating their velocities. Water multiples appear straight because we used their
true velocities, dp = 8.0x10 % s/m, dz = 3.0 m.

or

dt 2

—_— v(1 .—pz’uz)j/g (2.23)
dh _

& c G Y (2.2b)

Integrating equation (2.2) gives the desired transformation equations
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(2.3a)

(2.3b)

It should be noted that there is a limitation in the use of transformation (2.3).

When the correct velocity is used, these equations will only flatten pre —critical

reflections. Refractions and post —critical reflections interfere constructively to
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FIGURE 2.3. Marine data in (p,2) coordinates. #(z). (a) Velocity function ©(z).
(b) Marine data in (p, 2z) coordinates transforming with the velocity function (a).
Early primary events appear straight, independent of ray—parameter, muitiple re-
flections bend downwards because their depths are overestimated by the veloci-
ty function. The effect of overestimation increases with ray —parameter p.
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form a p—=z image. This image was used by Clayton (1981) to estimate velocity.

In figure (2.1) we display the effect of the transformation (2.3) with a syn-
thetic CMP gather. This is done using exact and perturbed velocities. When
velocity is underestimated, there is an increasing error in the estimation of depths

with increasing ray —parameter.

In figure (2.2) we display a marine CMP gather and its mapping to (p,z)
space using constant water velocity ¥(z) = 1450 m/sec. Sea floor water
multiples appear straight, independent of the ray—parameter p. Primary events

are curved upwards because we have underestimated their velocities.

Figure (2.3) shows a velocity function #(z) and the data into (p,2) coordi-
nates when this velocity function is used. The reference events are now inde-
pendent of p. Multiples appear to bend downward because we are overestimat-

ing their velocities.

It is clear from the examples, that errors in the velocity function ¥(z) will be
emphasized near critical angles. Velocity underestimation, for example, will
increase depth estimates at wide propagation angles compared to small ones.
Only when the correct velocity is used will depth become independent of angle. It
is possible to define a velocity estimation process exploiting this sensitivity. This
process should determine velocity interactively, one event at a time in chronologi-
cal order. In the marine case we start with water velocity and flatten the first
sea floor reflection. Then we pick the next primary arrival and use its variation of
depth with p to find a velocity correction. We update the velocity function and
flatten the event. We continue this way, one event at a time. At any given step

we have the correct velocity function for the depth of the current event.

We need an equation to find a velocity correction from the observed varia-

tion of depth with angle. Modifying the discussion given by Lynn (1979), from



-45 -

equation (2.3a), when velocity v(z) is correct to depth z, we can write

772 d¢ (2.4)

For an estimate of velocity ¥(z) the depth will be wrong; denoting this depth by

Z we have

z F(£)1
f = f ) 2 ’U(f) |1/3 dé (25)
o]

Arrival times are independent of whether we are using the exact or the

wrong velocity functions. We can equate equations (2.4) and (2.5) to obtain

¢ = [ —2u@
4 l1 - pRu(£)?

— ¢ gy—1
29(§) 772 df (2.6)

7z df = I
| Uil

In a stratified medium, assume that the velocity ¥ is correct up to the
(7 —1)" reflector, i.e. T = y forallk =1,2,3,..,5-1. If the velocity v; is

constant in the 7 interval, we get from equation (2.6)

2yt 2 g} 3
Tﬁ[ﬁ‘szj = 2’_2 7z A%; 2.7
1 —P*vy | 1 —p*y]
where Az; = z —z;_, and AZ; = Z —z; ;. The depth 2;_, is the same in both

cases because the velocity ¥ has been assumed to be correct down to the

(7 —1)* reflector.

Solving equation (2.7) for v; we obtain
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In this expression we do not know Azj. This quantity depends on the velocity ¥;

we are using in the j”‘ interval. We can only approximate it by measuring the
depth interval between the (j —1)* and the j** reflectors in (p,2) space when
p =0. AEJ- is the the difference in depth between the (j—1)t" reflector and the
7" reflector, measured at some non—zero value of p. It can be seen that when
we flatten the reflector and the depth becomes independent of p, equation (2.8)

gives the true velocity.

The usefulness of this approach is limited because no post—critical energy is
used in the estimation. Schultz (1980) estimates velocity using slant sfacks,

which better exploit the sensitivity of post—critical reflections to velocity.

3.3. Transformation to (A,f) space,

In this section the problem is to generate a seismic gather from
ray —parameter depth space (p,z). From the last section we know that using the
correct velocity function makes the data independent of the p coordinate.
Velocity information is lost going to (p,2z) space. Regenerating the original
seismic gather geometry requires the use a replacement velocity ¥. In the new

gather all events should appear to have the constant replacement velocity.

To obtain the transformation equations we need to replace a constant veloc-

ity 7 into equation (2.3) to get

" 2z

t = n T (3.1a)
'ul1 —pTvT |

h = A (3.1b)

P
[}~ p0%
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FIGURE 3.1. Marine data in (%,F) coordinates. (a) This figure shows the mapping
to hyperbolic space for the data of figure (2.2). Since the ray equations used in
the transformation can only handle pre—critical reflections, the data was interpo-
lated to duplicate the offset spacing: dh,,,, = 12.5 m. Note the location of the
first missing trace from the original and the general hyperbolic look, with few
crossing of events. (b) Hyperbolic velocity spectrum. Early arrivals align at v
because 7(z) is close to the true velocity. Late arrivals depart from ¥, implying
we need to correct our original estimate 7(z).

where (?, I:) are the new coordinates. Solving these equations for (p, z) we get

~

2h
= T (3.2a)
P vt
z = [-1—172?2 — h?)ie (3.2b)

This transformation expects the original wavefield to be independent of p.
If this is the case, the new wavefield will be hyperbolic. Otherwise it will only be

an approximation.
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A computer algorithm incorporating the deformation to hyperbolic space does
not need to store the intermediate (p, z) space. The ray equations (2.3) are
invertible for constant velocity, making possible substitution of equation (3.2)

into equation (2.3) and getting the output scanning the input data itself.

Figure (3.1) shows the data from figure (2.2) into hyperbolic space. Since
the original data had large offsets, the critical angle for shaliow reflections is
reached within a few offsets. Mapping the data was thus interpolated to dupli-
cate the sampling spacing in the pre—critical region. This interpolation is easily

done while transforming.



