CHAPTER 1l

Ray Equations In Retarded Snell Midpoint Coordinates

2.1. Introduction.

Group velocity equations represent asymptotic descriptions of wave opera-
tors in the high frequency limit. They may be used to study the motion of energy
when wavefields are extrapolated in depth. In this chapter we derive a method

of finding group velocity equations from any given wave equation.

Specifically we apply the method to find group velocity equations for wave
equation operators in retarded Snell midpoint coordinates. This coordinate system
is convenient for the velocity estimation problem. Since all wavefield extrapola-
tion operators require a background velocity to be specified, we use ray equa-

tions to analyze their sensitivity to velocity.

We start the chapter finding group velocity equations for the exact
two—dimensional acoustic wave equation and two of its one—way approximations.
Next we use the definition of retarded Snell midpoint coordinates to transform
these group velocity equations to the new coordinate system. The velocity
dependence of wave equations is discussed along with their group velocity equa-

tions.

2.2. Group velocity equations from wave equations.

Given a gather in half offset—time (h,t) space, in the process of downward
continuation to zero time and zero offset, energy must move along the group
velocity lines. For constant velocity these lines will be straight. They can be

determined by application of the formal ray-—tracing equation (Cerveny et al
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1977, Yedlin 1978). Such equations are valid when there is anisotropy and the
direction of the phase velocity vector is not the same as the group velocity vec-
tor. Another advantage of direct application of the ray—tracing equations is that
they can be transformed into any coordinate system. Iin what follows, the ray
equation will be derived and then applied to the problem of imaging. For ray trac-
ing the amplitudes are not calculated, but these can be qualitatively determined

by looking at the instantaneous ray density.

The general ray tracing equations, which will be derived for a
two—dimensional constant velocity medium, can be best obtained by using the
dispersion relation for the particular wave equation under consideration. Let us

consider a general dispersion relation of the form:

F(p,g) =0 (2.1)
where w is the frequency,

p = }Ch/&) (2.2&)

qg = k/ W (2.2b)

and k, = horizontal wavenumber, k, = vertical wavenumber.,

The frequency is scaled out of the dispersion relation, as we do not want our
ray trace equations to have any explicit frequency dependence. Also it is con-
venient to work in slowness coordinates, which are the duals of the displacement

coordinates.

Now consider a ray whose coordinates (h,z), are parameterized by the time
t along the ray. Then the components of the tangent vector to the ray are pro-
portional to the group velocity. The group velocity, in turn, is proportional to the

normal derivatives of the dispersion relation, F(p,q) = 0. Therefore, (figure 2.1)
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FIGURE 2.1. Phase and group velocities. F'(p,q) represents the dispersion rela-
tion for a given wave equation. The direction of the phase velocity for a fixed
angle 3§ is given by the position vector to the dispersion relation 7', while the
direction of the group wvelocity is given by the normal vector at F'.

dh _, oF

HT— A ap (2.3a)

dz _, OF

e A 3q (2.3b)
For most situations, it is easy to calculate %5— and %

The parameter A can be evaluated by looking at the definition of a wave-
front. A wavefront is defined to be the locus of points such that at a particular
time, ¢t = 71(h,z) defines the location of the wavefront. Differentiating this func-

tion T with respect to { using the chain rule, we get

_ drdh BT dz
1= nat ¥ oz at (2.4)

The quantities g—;; and o7 are the wavefront normal components p and g.

Oz

Substitution of equation (2.3) into equation (2.4) results in:
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1

or , oF (2.6)

A=

The formalism of equations (2.3), (2.4) and (2.5) is convenient in that it can
be applied to any dispersion relation. There is no need to get involved in compli-

cated geometric projections, as happens if the dispersion relation departs from a

circle.
TABLE (3.1) Ray equations. Non—slanted wave propagation.
F(p,q) dh/ dt dz / dt
1
90° p? +q? - v_a pu? qu?
2 1 2pv* 2y
15° + 2Y
! 2 v pruR + 2 pPu? + 2
1
— 2 5y _ 1 2.,2)2
2g0 1 1 a P 2 v (1 a PV )
q—;}——1——-—2'u2 1+£—“’u4 1+3—4'u4
p 16 P 16

2,3. Examples in non-retarded, non-slanted coordinates.

Table (8.1) summarizes the ray equations derived in Appendix (A) for the
non—retarded, non—slanted acoustic wave equation and its one—way fifteen and

forty —five degree approximations.

In figure (3.1) the dispersion relations are plotted. The exact case is a sem-
icircle. Figure (3.2) plots the group velocity equations. The exact case gives

straight lines when the velocity is constant.
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FIGURE 3.1. Dispersion relations. Positive quadrant for the dispersion relations of
the (a) exact, (b) fifteen, and (c) forty —five wave equations.

A convenient way to see how these equations move energy when downward
continuing events in CMFP gathers is the following: start with some event
representing the arrival times from a given reflector. In the high frequency limit
where ray equations are valid, to every arbitrarily small neighborhood about a
fixed arrival point of an event, there is an associated value of the ray parameter
p. In constant velocity most of the energy converging at that point has been
propagated with a fixed angle. We can fix this angle and follow the trajectory of
the energy as downward continuation proceeds. For the figures we will draw tra-

jectories for several angles of propagation at every other Az step.

For the exact acoustic wave equation, figure (3.3) shows group velocity
trajectories as a function of angle for a given event at different velocities of
extrapolation. In the first case, (figure 3.3a), when the event and operator velo-
cities match, the energy at all angles moves toward the origin. There is a depth
where all the energy is at the origin. At this depth we define the image of the

event. Once the depth of imaging has been passed, the energy diffracts back to



-20-

dh a/ dz |
dt e dt
uw L’.’_
o 2 c
/a
S 0.5 A 0.5 il

FIGURE 3.2. Group velocity equations. (a) exact, (b) fifteen, and (c) forty—five
wave equations.

negative times.

In the second case, (figure 3.3b), the operator velocity has been underes-
timated by 5%. The imaging principle is applied when £ = O is reached extrapo-
lating with the operator velocity. Because of the velocity error, the energy is still
unfocused when we reach the time origin. The energy in the imaged gather will
appear smeared over several offsets. The best focus occurs at the time when
the depth of the event is reached, not when we apply the imaging principle. Even
at this time the velocity error prevents all rays to converge in phase to zero
offset. An exact operator can only give a perfect focus when the exact velocity

is used, otherwise it can only approximately image the energy.

The third case, (figure 3.3c) is similar to the second, with velocity overes-
timated by §%. The energy is best focused at the true depth, not when we apply
the imaging principle at £ = 0 according to the operator velocity. Again, the best

focus is not only at the wrong time, but appears blurred as well.

qv
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FIGURE 3.3. Imaging, ninety degree. This figure illustrates the way ener-
gy moves in the (h,t) plane as we extrapolate with the 90 degree wave
equation. The figure was computed starting with some hyperbolic event
for a fixed depth, subsequently extrapolating the wavefront using the ray
equations. The process was done at fixed increments of depth,
represented as slashed lines in the figure. In (a) the extrapolation was
done with the same velocity as used to generate the hyperbolic event.
We get a perfect image at { = O since all the rays are traveling at the
correct speed for all angles. In (b) we used a 5§ % lower velocity in the
extrapolation. Now the energy is imaging at { < 0. However, now the
speed at which the wavefront moves has become p —dependent, and we
no longer achieve a perfect image. In (c) the extrapolation velocity was
5% higher. Now the image is at £ > O and again the wavefront velocity is
dependent on p, a blurred image is obtained.
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FIGURE 3.4. Imaging, fifteen degree. In this figure we are extrapolating
the wavefront with the 15 degree equation. The figure was computed
using angles ¥ < 30°. We are again extrapolating the wavefield at fixed
increments of depth, represented by broken lines in the figure. in (a) the
extrapolation velocity equals the event velocity. We can check that for
angles close to 0° the energy arrives close to t = 0. For wider angles
the energy is traveling slower than required for correct imaging. In (b)
the extrapolation velocity is 5 % slower, so energy images at £ < 0. In
(c) the extrapolation velocity is 5 % faster. The rays close to 0° image
earlier in time. Since the 15 degree equation moves energy slower than
required for wider angles, the apparent best imaging occurs with this
higher velocity than with the exact velocity. This is associated with the
effect shown in figure (3.2), where the group velocity for the approxi-
mate operator is less or equal to the group velocity for the exact opera-
tor.
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FIGURE 3.5. Imaging, forty—five degree. Extrapolation with the 456 de-
gree equation. The figure was computed using angles ¥ < 60°. Note in
particular that the position of the image has been improved when the ve-
locity is correct, but we still need higher velocity to get better image.
Velocities are the same as in figure (3.4).
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For the fifteen degree equation the ray equations have 5% error when
$ &~ 30° (figure 3.2). The approximate operator moves the energy slower than

the exact operator, this effect increasing with angle.

Figure {3.4) illustrates the behavior of the operator associated with the fif-
teen degree ray equations. We plot the situations when the operator velocity is
exact and when there is 5% under and over estimation in velocity. The decreas.e
in the group velocity of the operator with respect to the exact group velocity is

seen. Better imaging is obtained when velocity is overestimated.

For the forty—five degree equation, (figure 3.5), the group velocity is still

slower than the exact one, but now we get 5% error for 3§ ~ 60°.

Note in particular that when the extrapolation velocity is incorrect, the image
obtained with the approximate one—way equations is nearly as good as the image

given by the exact operator with the same incorrect velocity.

2.4. Group Velocity Equations in Retarded Snell Midpoint Coordinates,

Retarded Snell midpoint coordinates are a suitable frame of reference for
studying slanted wave propagation. These coordinates are also a natural frame
of reference for velocity estimation problems. Because of the importance of Snell
coordinates, we derive group velocity equations for the wave equation in this
coordinate frame. The ray equations will allow us to better understand how our

wave operators move the energy when used to image CMP gathers.

Using the notation defined in figure (4.1). The coordinates are defined as

follows: (one—way travel time)
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FIGURE 4.1. Slant wave propagation geometry.

cos Y
t' =t -—poh + 'Z—'U_O (4.16)
R = h + ztand (4.1b)
2z = 2z (4.1¢c)

The utility the above coordinate derives is that, for the particular p, chosen,

h’ is fixed as we downward continue. Also, the imaging condition for ¢' is simply

zcosdg . . - .
t = — Applying the transformation (4.1) to the original data and migrat-

ing keeps the top of the new skewed hyperbola fixed. This result is useful in

velocity analysis.

Before proceeding, we need to fix the sign convention. From figure (4.1), we

notice that both df and dh are negative when we project the ray from the geo-

phone back to the source. Z—}:— is positive. Similarly, as ¢ is decreasing, 2' is

increasing. Therefore,
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dh| _ dz
sgn[ﬁ-] = sgn[dt (4.2)

To find the appropriate ray equations in the new coordinate system, we need

to compute ar and dL. Application of the chain rule to &' in equation (4.1)

dt' dt'
resuits in
dh' _ dh  dz
- a T @ tan 9 (4.3a)
dz’ _ dz_
dt | dt (4.3b)
but
dh' _ dh df
dt =~ dt' dt (4.48)
dz' _ dz' dt'
dt ~ dt' dt (4.40)

Substituting these results into equation (4.3), writing the tangent and cosine as

Po

function of p and g, tandy = q—, cos¥dg = gov, and taking care of the sign
0
convention, we get
dh dh dz | po |[ar |”
= == o = B = 4.5
at dt dt | g0 ] [ at ] (4.52)
dz’ _ | de || dt' |
il Berad Nl B (4.5b)

The (cilLt derivative is obtained using equation (4.1):
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a _ 4 _ dh_ dz_
dt Po | gt

5 (4.5¢c)

— Qg

Finally we need to find transformation equations for p' and ¢' for the new

coordinate frame. For this we use equation (4.1) and find that

ot ot dh P
I ar ant | Mo

eh' |, Bh OR' |,

For z fixed Oh = 1. Therefore
oR' |,

ot ot
— — +
or|, ~ aw |, P°

Of course 6_t

3n| 1S

z

If all the variables are seen in the slanted coordinate system, we need to

replace p and g with

P =p +pg (4.6a)

1
l—{1 — 02 (p” + pg)? } ” (4.6b)

w0
[}

where p' is the measured —
R |,

Wwith p, ¢ and the sign convention determined, equations (4.5) and (4.6)

allow us to find ray equations in the new coordinate frame as a function of the

ray equations in the standard reference frame that was used in section (2).
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2.5. Examples in Retarded Snell M idpoint Coordinates.

Table (5.1) summarizes the group velocity equations transformed into Snell

midpoint coordinates using the rules of transformation derived in section (4).

We start illustrating the behavior of energy in this new coordinate system
with a non-slanted example. Figure (5.1) shows downward continuation with
reference ray parameter p, = 0 using the exact acoustic wave equation. Here

the only effect the coordinate transformation has is time retardation by

TABLE (5.1) Ray equations. Slanted wave propagation.
dh’' / dt’' dz'/ df'
90° gopv? — pogu? qu®
go[1 = popv® — goqu?] [1 —popv® - gogv?]
14+ 12,2 2 1 2.2 2
+ ZPTUT —ppoUt — qov 1+ 5p™v" —ppov™ — gov
pvz_?ly(1._1_p2v2)2 'U(1 _Lpgvz)z
450 do 4 4
dend5 dendb5
= p’+pg
dend5 = 1 + %fp“’u‘* — pgpu® —qou (1 — :1—102112)2
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zcosUp/v. The image is still defined at ¢ =0, translating to
t' =7 = 2 cos¥p/ v in the retarded frame. The zero offset arrival does not move

as downward continuation proceeds.

In figure (5.2) the slanted case is illustrated with the exact downward con-
tinuation operator. First notice that the p' = O point of the event remains fixed
as the extrapolation proceeds. This p' = 0 point remains stationary, independ-
ently of whether the extrapolation velocity was incorrect. When the velocity is
exact we get a prefect image; all the energy converges to the same point at the
same depth. When there are errors in velocity we can only expect a blurred

image.

Figure (5.2) shows how the linear moveout correction has increased the
stepout (higher p') in the negative range of offsets while it has decreased the
stepout for the positive range of offsets. Group velocity equations and their
associated operators are more sensitive to errors in velocity for higher stepouts.
In a typical field data gather only positive offsets are available. These offsets
are where there has been a decrease in relative stepout. We expect operators in
Snell coordinates to be less sensitive to velocity than non—slanted operators.

This is ah advantage when imaging gathers for velocity estimation.

Figure (5.3) illustrates the use of the fifteen degree group velocity equa-
tions. Imaging has now become less dependent on velocity, even though we are

plotting angles of propagation up to 60° (about pg).

Figure (5.4) illustrates the forty—five degree approximation behavior for the
group velocity equations. Now we have more sensitivity to the operator velocity.

The size of the zone where the image occurs is wider.
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FIGURE 5.1. Imaging, ninety degree, pg = 0. This figure illustrates wave-
front extrapolation in retarded non—slanted coordinates. In (a) the
correct extrapolation velocity is used. All rays arrive at the imaging point
in phase. In (b) the extrapolation velocity is & % slower. In (c) we are
using a 5 % faster velocity. As we downward continue the wavefront, en-
ergy moves towards the zero offset region. Also note in this figure that
velocity errors are emphasized at wide angles.
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(b) (c)

FIGURE 6.2. Imaging, ninety degree. pgy # 0. This figure illustrates wave-
front extrapolation in retarded Snell midpoint coordinates. The figure is
for exact group velocity equations in Snell coordinates. At the surface
we used an angle ¥ = 30° for the linear moveout correction (equation
4.1a). In (a) the correct extrapolation velocity is used. All rays arrive at
the imaging point in phase. In (b) the extrapolation velocity is 5 % slower.
In (¢) we are using a 5 % faster velocity. As we downward continue the
wavefront, the energy moves toward the top of the skewed hyperboloid
independent of the extrapolation velocity. Note that when the velocity is
incorrect, high p values emphasize errors in the direction which energy
moves.
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FIGURE 6.3. Imaging, fifteen degree. %’0 #Z 0. Imaging is done in Snell
midpoint coordinates for a range of 60" about the reference wavefront
slanted at 30°. (a) has the right velocity, (b) a 5% underestimation and
(¢c) 5% overestimation. There is little difference among the figures, so
even though imaging is poor, the fifteen degree equation is particularly in-
sensitive to errors in velocity in slanted coordinates.
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FIGURE b5.4. Imaging, forty —five degree. pgy ¥ 0. The imaging is done in
Snell midpoint coordinates for a range of 60° about the reference wave-
front slanted at 30°. (a) has the right velocity, (b) 5% underestimation
and (c) 5% overestimation. This approximation is more sensitive to errors
in velocity. No apparent improvement in imaging is expected, compared to
the fifteen degree equation, when imaging in slanted coordinates.
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2.6, Condusion

From the examples presented in this chapter, Snell midpoint coordinates
prove to be a useful frame of reference when imaging events in CMFP gathers.
The linear moveout correction reduces high stepouts in the recorded data (in the
positive range of offsets). Wavefield extrapolation operators are more sensitive
to velocity at high stepouts, so this feature reduces errors. Downward continua-
tion and imaging in Snell midpoint coordinates keeps the arrival coordinates of the
reference Snell wavefront stationary. This is critical estimating velocity. Wave
approximations are also fitted about a slant propagating wavefront. They can
handle steeply traveling energy better than any non—slanted coordinate frame,

and we do not need accurate operators oversensitive to velocity.

We have also learned that exact operators for wavefield extrapolation are
useful only when we have exact velocity functions. There is always a trade off
between accuracy of operators in imaging energy and accuracy in velocity func-
tions. When there is a wide range of uncertainty in velocity, a low order approxi-
mation operator should suffice. Only as uncertainty in velocity decreases, does it

pay to increase the accuracy, and therefore the cost, of the operators.

Finally, in slanted extrapolation the fifteen degree equation gives satisfac-
tory results. The forty —five degree equation does not appreciably improve reso-

lution.
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Appendix A,

In this Appendix we derive dispersion relations for the exact acoustic wave
equation and its two most commonly used ohe-way approximations. We apply

equations derived in section (3) to find their associated group velocity relations.

The two—dimensional acoustic wave equation in half offset—time coordi-
nates, in a constant velocity medium and in the absence of external sources, is

given by

8? I N

a—hz—+ 67—F6? f(h,Z,t) =0 (A.1)
where f represents the acoustic wavefield.
Introducing the Fourier Transform:
Fllnkew) = [ [ [ flhzt)e “t %30 g gy gr (A.2)
1 1 toph + ik z —1
f(hzt) = W‘[‘[‘[ Flie oy ) @ nl + Ha® —10t dky, dk, dw  (A.3)
we obtain

Flkp,kyw) = 0 (A.4)

2
w
khz'i'kzz—-?-
v

Substituting for the definitions of p and ¢ from equation (2.2) we get the
dispersion relation
L

P+ q° — =0 (A.5)

To find approximations to this exact wave equation, we use Muir's expan-

sion (Cleerbout, 1982). This expansion is a recursion for the square root
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R = (1 =)

The initialization depends on angle, K¢ = cos 4, for zero degrees

(A.6)

We can use equation (A.6) to find approximations of (A.5). The fifteen

degree equation is given by the first term,

2
g ~ 1 _pv (A.7)

1
q R _1-)_—__ (A.S)

Ninety degree equation. To find the group velocity equations, differentiate equa-

tion (A.5) with respect to p and g, giving

oF _
dp = 2p
0F _
oq =29

Therefore, from equation (2.5)

A = (2p% +2¢9)71 = 1)2_

and applying equations (2.3) we get the ray equations



—d—t'— = py (AQa)
Z—i = qu® (A.9b)

Fifteen degree equation. Differentiating equation (A.7) with respect to p and ¢

we get

OF _
op p
ar _
og
Solving for A we get
A = 21} ¥ ]—1 _ 2v
1P 7] pPuR + 2

The ray equations are

Forty-five degree equation,

g we get

or

dh 2pu?

Gt T prRiz (A.102)
dz _ 2u
dt  pPuP + 2 (A.10D)

Differentiating equation (A.8) with respect to p and

or U
op (1 - %_pzvz)z

ole}
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For A we obtain

v (1 _ 1_p2v2)2
4
A 3
4,,4
1+ 16 v
The ray equations become
dh _ _ pv®
o= 3 (A11a)
1+ —ptut
16
v (1 - ]__pz,UZ)z
dz 4
e 3 (A.11b)
1+ —ptut

16
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