CHAPTER |

Snell Midpoint Coordinates

1.1. Introduction,

Seismic data is usually collected in shot, geophone, depth and time coordi-
nates. (s,g,2z,t). Data processing and interpretation are done either in
(s,g,2,t) coordinates or in midpoint, offset, depth, time (y,k,2,t) coordinates.
Formulations of the double square root equation (Stolt, 1968; Claerbout, 1982)
either in (s,g,z,t) or in (y,h,z,t) result in wavefield extrapolation operators
that can image satisfactorily energy propagating close to the vertical. However,
unless the exact medium velocity is known and the data follows the wave equa-
tion model perfectly, it is impossible to model wide propagation angles. For veloc-
ity estimation we need velocity independent wavefield extrapolators that couid
be used at wide propagation angles, there the data is more sensitive to velocity.

None of the standard coordinate frames proves to be convenient.

In this chapter we introduce Snell midpoint coordinates. This frame of refer-
ence is specifically formulated to study slant wave propagation in the earth. The
Linear Moveout (LMO) method of velocity estimation follows from the definition of
Snell coordinates. With this method it is possible to estimate interval velocity
using a fixed slant reference wavefront. Velocity estimation is accurate at all
non—zero propagation angles. We analyze the properties of the LMO method and

discuss the non—uniqueness of interval velocity estimates.

In chapter (IV) the double square—root equation will be formulated in Snell
midpoint coordinates. In this coordinate system we can define wavefield extra-

polators at wide propagation angles that are relatively insensitive to velocity.
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Exploiting this property it will be possible to define the wave equation velocity

spectrum.

1.2. Snell mid point coordinates,

Studying wave propagation problems in the earth, it is customary to use
plane vertically traveling reference wavefronts. An alternative approach is given
by slant reference plane waves. These waves leave the surface at some
non—zero takeoff angle. A slant wavefront has one of its components traveling
laterally. This lateral component preserves information of the material properties

the medium.

In stratified media Snell's parameter p, which is the horizontal component of
the phase velocity, remains constant during propagation. A Snell wave is
defined as a wave that has a fixed Snell's parameter p attached to it throughout

sind

its propagation. At the surface, since p = , to each departure angle there

is a unique ray parameter p. As the wavefront travels, it will be refracted by
changes in material properties with depth, but p will remain constant. Because of
this property, Snell waves can be identified when they get reflected back to the

surface.

From figure (2.1) we can see that when a slanted wavefront is leaving the
surface at some offset h, the same wavefront has already traveled to depth z at
the origin. Similarly, if the velocity of the medium is v the ray, perpendicular to
the wavefront from the origin, has traveled a distance vt. Computing the travel-
times to positions (h,z =0) and (h =0,2) give for the horizontal and vertical

components of the phase velocity (vg,vy)
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We also have that a reflected slanted wavefront from depth z will not arrive

at zero offset, its arrival coordinates are

h = [tan9(¢) d¢ (2.3)
0

= 2f o8 4,
0

) (2.4)

From these equations we can see that the arrival offset at the surface depends

— h

Z

FIGURE 2.1. Slant wave propagation.
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on the velocity structure of the medium. Velocity information is not lost. Our
reference travel time is for the vertical component of the wavefront. This com-
ponent travels with velocity vy which is always greater or equal to the medium

velocity. The minimum travel-time is less than the zero offset travel-time.

Snell midpoint coordinates are defined as

z [1 __pg,uz(g)]l/e

t = t—po(g—s)+2{ 0D d§¢ (2.5a)

y = S__;S (2.5b)
_ g -—-=8 y pov(£)

h 5 +{ TEPYRIPNTE d¢ (2.5¢)
_ 7 [ -pfuR(9]#

T = 2{ e d¢ (2.5d)

These equations allow us to transform data from field coordinates into slant coor-
dinates at any given depth. Figure (2.2) illustrates the geometric relationships.
pg fixes the angle of the reference slanted Snell wave. In Snell Coordinates all
arrivals with the reference ray parameter pg will have the minimum traveltime of a
given event. In the next section we describe a method to estimate velocity using

the arrival coordinates of a reference Snell wave.

1.3. Velocity estimation in Snell M id point Coordinates: LM O method.

Claerbout (1982) introduced a direct velocity estimation procedure using
Snell waves. The method is a direct consequence of Snell midpoint coordinates at
the image point. In this method velocity is determined as a function of arrivals
associated with a slanted reference wavefront. In a stratified earth this treat-

ment is exact for all nhon— zero offsets. The method requires the data in Snell
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FIGURE 2.2. Snell Midpoint Coordinates.
midpoint coordinates. From equation (2.5) Snell midpoint coordinates at the sur-

face of the earth (z = 0) are:

t =t —polg —5) (3.1a)
y = -‘7’% (3.1b)
h = Fzﬂ (3.1¢)
=0 (3.1d)

The data, therefore, needs to be sorted into midpoint—offset coordinates. Time
should be modified with (equation 3.1a). This correction is commonly referred as
linear moveout correction (LMO) to distinguish it from the Normal moveout NM0O
dynamic correction. This method of estimating velocity will be referred as the

LMO method from now on.
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From the last section we know Snell midpoint coordinates preserve velocity
information. To find velocity, insert the imaging conditions s = g and t = 0 in the

definitions of Snell coordinates to get at fixed midpoint

=T (3.2a)

y pov(£)
= d .
h { [ —pZu (77 ¢ (3.2b)

z —nR Ry12
- = o pBuO]
¢

e d ¢ (3.2¢)

With ;ﬂ and Z—T we can use the chain rule to eliminate dz and solve for veloc-
2 2

ity:

1

v =
dr

1 3.3
Po¥ 2 4n &3

Po

When the reference ray parameter is zero, this equation is indeterminate, implying
velocity information is hot available at zero offset. Equation (3.3) is valid at any

depth of observation.

Using equation (3.3) we can estimate velocity directly from the data. The

ray parameter p; fixes the departure angle of the reference wavefront. The

slope (;h_T is measurable directly from the data. We consider two alternatives to

measure this slope. It can be measured from the origin, or it can be measured

between two consecutive primary arrivals. What velocity is being measured?.

First notice that the slanted time 7y is not equal to the vertical time £{g; a
cosine correction needs to be done. Assuming velocity can be parameterized in

different variables
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v(z)
d(z)

v.(1(2)) v, (t(2))

ﬂt(t(z))

H
1

9 (1(2))

The observed T, in slanted coordinates is given by

_ % [ —pgur1
To = 2_0[ "G d¢ (3.4)
while the vertical traveltime is
o
to = 2{ TR (3.5)
Combining equations (3.4) and (3.5) yields
to
7o = [ [1 - pdvAO)]7d¢ (3.6)
0
To 1
tg = f d (3.7)

o [1-psuv(O17?

or, approximating the propagation angie to a constant cos ¥ = [1 — p§u?]'7%,

To

tg = (3.8)

cosJg

If £y is not picked directly from the data, this equation shows how to find it from

the image positions 15. The depth is given by

7o

1 vA£)
2 o [1-pdvi(O])~”

2z =

ty
d¢ = ;_{ v (£) d¢ (3.9)

To find what velocity the LMO method measures, by combining equations

(3.2) and (3.6) we can write the arrival offset h as a function of 7
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or since cos®y, = 1 — pgv?

(3.10)

We can think of replacing the velocity structure in stratified media by a sin-

gle layer with constant velocity ¥. This statistically represents the velocity

structure of the rock column. Replacing ¥ in equation (3.10) gives*

B = J_po'!j T
2 cos?y
Solving for ©?
2 = 2 cos?d h_
Po T

replacing A by the expression of equation (3.10) yields

17 ud?
coszﬁ f cos?9,(£) at

We can rewrite this equation as function of the two—way traveltime ¢

cos® 8

to obtain

xSince h and T are fixed, errors in this approximation will affect the depth 2.

(3.11)

(3.12)

(3.13)

(3.14)
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vus (po) (3.15)

<

t
2 = —}—{vt(e,po)zds

This is Dix's equation. Constant velocity ¥ in equations (3.2b) and (3.2¢) give

the relation

(3.16)

Po |Po t

Tr
h

l\)|—l

Therefore, the slope 7/ h from the origin gives an estimate of the RMS velocity.

(Figure 3.1). This upys is not unique, it depends on angle.

Instead, if we measure the slope between two consecutive primary events,

from equation (3.2) we have

Ti41 ( )
A = hiy,—h = 0:'[ cosa’g(g) d¢ (3.17)

Assuming constant interval velocity between the events and solving for velocity,

we get

2 -
Vinterval ~
AT

1 A7 (3.18)
p0+ 2 Ah-

Do

Therefore, when velocity remains constant between any two consecutive primary
arrivals, equation (3.3) gives their interval velocity. (Figure 3.1). When velocity
varies appreciably between reflectors, interval velocity is unresolved with reflec~
tion traveltime data alone. Equation (3.3) gives then a local RMS velocity esti-
mate for the particular choice of pg. In the next section we analyze this situa-

tion.
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FIGURE 3.1. Linear velocity estimation. (a) Synthetic CMF with LMO applied. The
data shows arrivals for two primary reflectors, two multiples and two peg-—leg
multiples. The reference Snell wave for the first primary has arrival coordinates
(Ah,t]o); the first multiple (2Ah, 21%); and the second multiple (3 Ah, 3¢°).
Similarly the reference Snell wave for the second primary arrives at location
(hy, t7)); the first peg—leg multiple at (h; + Ak, t’; + t73); and the second
peg—leg multiple at (A, + 2Ah,t’; + 2¢p). The interval velocity for the second
medium is a function of the slope between the reference Snell wave arrivals for
the first and the second primaries, that is, the slope of the first dashed line. Snell
midpoint coordinates preserve the timing and offset relationships of multiple re-
flections, thus the interval velocity can also be estimated measuring the slope
between the reference Snell wave arrivals for the i multiple and peg—leg multi-
ple. Raypaths for the reference Snell wave arrivals are shown at the top. (b)
Wave equation image of the data. In Snell midpoint coordinates velocity estima-
tion can be done at any depth of observation, therefore with the image of the
data itself. (Chapter IV).

It is emphasized that in obtaining equations (3.3) and (3.18) no geometrical
The horizontal coordinate of the wavefront has

approximations were made.

velocity information and these relationships show how to find it. A convenient
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way of measuring velocity is to tabulate equation (3.3) for a fixed value of the

ray parameter py. This is shown in figure (3.2).

As pointed out by Schultz (1981), more accurate interval velocity estimates
should be used as an interpretation tool more than as a processing tool. Accurate
interval velocities do not necessarily imply better stacking velocities. They do

imply better migration velocities.

When there is a geologic dip component with angle «, Levin (1871) proved
that vy, obtained using Taner and Koehler's method is vpys modified by the

cosine of the dip angle

v
Uyyo = cggi (3.19)

This result is valid when slanted reference waves are used.

More realistically, the data may have events with several dips. Pre—stack
partial migration can be applied prior to velocity estimation to obtain a more accu-
rate dip compensation. (Sherwood et ol, 1976; Yilmaz and Claerbout, 1980;

Deregowski and Rocca, 1981; Ottolini, 1982; Hale, 1982).

The LMO method has important advantages. This method can be used in the
far offsets where data has more velocity resolution. The method is flexible in
that we can select a value of py where the signal—to—noise ratio of the data is
particularly good. Transformation to Snell midpoint coordinates is linear. Also
there is more control in deciding what events to use in the velocity estimation
process. Multiple reflections preserve their timing relationships, becoming easier
to discriminate against primaries. This method is also partially insensitive to

refractions and cable truncations.
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FIGURE 3.2. Velocity estimation grid. This grid is a tabulation of equation (3.3)
for a fixed value of Snell's parameter py. The slope from the origin gives the
FEMS welocity, the slope between two consecutive primary events gives their
Interval velocity.

1.4. Non-uniqueness of velocity estimates.

In the last section we proved that in stratified earth with flat reflectors and
no velocity variations between reflectors, the LMO method could be used to get
consistent interval velocity estimates at any propagation angle. The LMO method

can also estimate RMS velocities according to Dix's equation.

When there are velocity variations between reflectors, reflection data alone
cannot give unique velocity estimates. The probiem is underdetermined. This may
happen either when there are continuous velocity inhomogeneities between
reflectors (infinite unknowns), or if the interval velocity is measured between

non—consecutive primary arrivals.

The LMO method is sensitive to velocity variations between reflectors. We
can use Snell midpoint coordinates to find criteria to decide when these velocity

inhomogeneities are not negligible. If this is the case, velocity estimation
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FIGURE 4.1. Image coordinates as function of p,. (a) Superposition of synthetic
CMP gathers. A LMO correction has been applied with different p, before super-
position for display. Reference event has v = 1500 m./ sec. (b) Imaged CMP
gathers. In this diagram it is easy to follow the trajectory of the reference Snell
wave arrivals for different py. (c) 17y ws h diagram. This trajectory will be fol-
lowed by reference Snell wavefronts arrivals with increasing ray parameter pg.
Velocity is constant, different time-depths. (d) Same as (c¢) with variable veloci-
ty and fixed time-depth. The range of offsets is 1675 m,, time is in seconds.

methods with refraction data, such as the wavefield continuation method of Clay-
ton and McMechan (1881) or the tau-sum inversion method of Diebold and Stoffa
(1981), should give better velocity estimates. Refraction methods, however, do
not detect velocity reversals.

Reconsidering the question of what velocity the LMO method measures; from

equations (3.17) and (3.18) we know that if the velocity remains constant

between any two reflectors, then the interval velocity estimate is independent of
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the reference py. If we measure interval velocity at any two locations p; and py,

then

] (4.1)

As velocity inhomogeneities between reflectors increase, the concept of
interval velocity becomes meaningless. To see this, from equation (3.13) we

have

2 ] Ti+1{Po) v £ at @2)
cos?y T¢+1(po) —T-,;(po) po) COSZﬁT(S) )

i.e, interval velocity measurements become local angle—dependent RMS velocity

estimates.

With equation (4.2) we can quantify whether velocity variations are negligi-

ble or not. Defining an error function £(p,,p>) as

+ L AT
pl pl 2 Ah P

AT

] (4.3)
Pz [Pz + > AR pz]

8(P1:p2) =1 —

With £ we can quantify when the interval velocity estimates show angle varia-
tions above the measurement uncertainties. That could show there are strong
velocity variations between reflectors. A convenient way to test this is to plot
the expected vs the observed image locations as function of pg in the (h,T)

plane. (Figure 4.1)



