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Chapter V: Extrapolation Of Scalar Wavefields in an
Inhomogeneous Medium

Abstract

A formulation for one-way wave equations is given that is both accurate and stable.
The equations are generated from the full wave equation by a continued fraction square
root recursion. The solutions are WKBJ-accurate solution in the extrapolation direction.
The resulting operators are unconditionally stable. For acoustic wavefields the state
variable of the system is pressure divided by the square root of impedance.

The extrapolation equations are illustrated with the problem of computing Love
wave modes in a laterally varying medium.

5.1 Introduction

One-way extrapolation operators provide an economical and accurate method for
modelling certain types of wave motion. The operators are designed to march the solu-
tion from plane to another in a particular spatial extrapolation direction. The basic res-
triction on the use of extrapolation methods is that only the transmitted wave in the
direction of extrapolation is modelled. In many applications (i.e. migration) this restriction

is a blessing rather than a deficiency of the method.

For inversion purposes, one-way operators provide a means of backtracking a wave
to its point of origin (or reflection). In this case, the operators need to be at least as
accurate as the WKBJ solution for the direct wave between any two points in the

medium.

The use of one-way operators will entail a few approximations which will lead to
errors in the computed solutions. Two of these, anisotropic dispersion, and grid disper-
sion, are fairly well understood (Claerbout, 1976) and will only be briefly mentioned in
this chapter. Anisotropic dispersion occurs with waves that are travelling at a signifi-
cant angle with respect to the extrapolation direction. The extrapolation operators
introduce an artificial angular dependence to the velocity that causes wavefront with
large dips to be extrapolated to the wrong place. Anisotropic dispersion can be reduced
by using higher order extrapolation operators. Grid dispersion occurs as a result of using
finite differences to approximate the partial differential operators in the extrapolation
equations. In this case, higher frequency waves travel at a different velocity than lower

frequency waves. The effects of grid dispersion can be minimized (at least for modelling
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purposes) by choosing a finer grid interval.

In this chapter, a set of one-way extrapolation operators are derived for a laterally
varying medium. The computational errors with which we will be primary concerned are
the amplitude effects of the operators. Associated with this problem however, is the
question of stability. As will be shown in the next two sections, the inclusion of all ampli-
tude effects can make the extrapolation operators unstable. Unstable extrapolators are

of course, useless.

The extrapolation equations are illustrated with the computation a Love wave
modes in a laterally varying medium. This example is a useful test because the modes

contain both propagating and evanescent components.

5.2 Recasting The Scalar Wave E quation

The derivation presented in this section is based on the acoustic wave equation

1 A _
[VpV+T(4P—0 (6.1)

where p is the density, K is the bulk modulus, and P is the pressure wavefield. Analo-

gous results for the scalar SH-displacement equation can be obtained by inspection.

The first step in the derivation is to isolate the «w*-term from the bulk modulus in
equation (5.1). The necessity of this step will not be apparent until we generate the
one-way operators. At that point will need to require that the w?-term commute with the

z —derivatives. To achieve the separation we simply rewrite equation (5.1) as

P

R =0 (5.2)
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and cancel the leading 1/ VK term. The physical variable of the system is now P/ VK.

To put equation (5.2) in the form of an extrapolator, the x —derivatives and *-term

P
o 1" 1
ox| ~p

are moved to the right side of the equation. Thus,

-P\/% = [—wz + D{ID,]

where the spatial derivative operators are defined as

(-DED,)

D, = vk, DF =vVK

LI
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and

D, = =
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sary to introduce the concept of a directed derivative. Taking the z-derivative for

vk, DE=VK

H
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342] in the definitions of DX and Df, it is neces-
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To understand the role of

example, we will define the gT by

o) .
—f(z) = lim
ox Az +0

It is important to note in this definition that for the discrete case, the derivative is "spa-
tially causal”. That is, it uses only past (smaller ) values. The discrete operator in this

case is a bidiagonal matrix whose diagonal and sub-diagonal enteries are 1/ Az and
H

i{ operator is simply the

oz

transpose of this matrix. The corresponding continuous definition is then

-1/ Ax respectively. Clearly, in the discrete case, the

f(x) —Afz(x'FAx) (5.5)

which one can consider to be "spatially causal” in the (—z)-direction.

The eigenvaules of 3/ 0z and it Hermitian transpose have positive real parts. This

H
6%‘] i—are strictly positive and

means that eigenvalues of the second order operator Y

real. Also note, that in the limit as Az -0 in definition (5.58),
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5.3 One~-Way E xtrapolation Operators

To form one-way equations, we need to take the square root of both sides of equa-
tion (6.83). It is not clear how to directly take the square root of the operator (—Dsz).
The approach taken here is to decompose the operator into a square part and a correc-

tion term. That is, we write (-DD,) as
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(-DED,) = D? - C(z,2) (5.6)

where the square part of the operator is

D, =valm (5.7)
and the correction term is

2 2 2
_ K|1 Kzl 3 pzl 1Pz Kz] _Kzz _pzz]

Note that the correction term C(x,z) is a multiplicative operator because it contains no

spatial derivatives that operate on the wavefield itself. It is also second order in length

scale. We will neglect the effect of C(x,2) in the remainder of this chapter.

With the z -derivative operator defined by equation (5.6), the wave equation is now

P
—\/7] (5.9)

Formally taking the square root of (6.3) to obtain a one~way wave equation we have

Pl _ P |_ P
2] - ol ) - s 4] 610

where S, is the n® approximate to the exact square root S.,

o

2
%

P
vK

= [—wz + DID, ]

D,

Se=V—0f+ DzHDz (5.11)
The approximations can be recursively generated by continued fraction expansion!
DfD,
= ico + S = ] 6512
Sp = —iw Tt S5 So = —iw ( )

In taking the square in equation (5.9), have have assumed that the operators 52

and S, commute. Thus, we have neglected the commutator term (F)
F =D, + S (S.D, — D,S.) (5.13)

If the medium parameters (X and p) are strong functions of z, the commutator term will
be large. Neglecting it means that there will amplitude errors in the extrapolation solu-

tion.

erancis Muir, personal communication.
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To show that equation (5.12) converges to the square root in equation (5.11), let

Sp-1 -+ S, » S, as n—+o, Hence equation (5.12) becomes

H
T M

S =—iw+ ————
-+ S

Clearing the denominator by operating from either the left or the right with (—iw + S.),

we have
S = —® + DHED,

which confirms the convergence of the recurrence relation.

The choice of sign in equation (5.8) corresponds to up and downgoing waves. In
this paper we choose the minus sign which is the appropriate sign for downward wave

extrapolation, but a similar result holds for the plus sign.

To put equation (5.10) in the form of an extrapolator, the velocity terms are moved

to the right side thus putting the equation in the symmetric form

8 1 1 5
L p-_ __ _— 5.14
2. =" wm h (6.14)
where ,15 is the state variable and is defined by
P (5.15)

ﬁ: L‘)K]fl/:} = N

where 7 is the acoustic impedance.

5.4 Stability and Accuracy of the Extrapolation Operators

Two points must be considered when judging the suitability of the extrapolators
presented in the previous section: accuracy and stability. Stability is the first point to
check because a perfectly accurate solution is useless if it is masked by an extraneous

solution that is exponentially growing the the direction of extrapolation.

For a solution produced by the extrapolation equation to be stable, we will require
that

r H
_fdx psz-—;- dz ~——=<0 (5.16)

Physically, the quantity PHP/r is the energy flux per unit area. Performing the

z —differentiation we have
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H
Saz|| 2P B+ P2 Pl <0 (5.17)
dz 0=z
Substituting from equation (5.11), the condition becomes
— fdz P WSn+Sn]WPs0 (5.18)

Equation (5.18) is a quadratic in the variable v1Ep, Consequently, for stable extrapo-
lation we must have that (Sf/+5S,,) be positive definite, or in other words the real parts

of the eigenvalues of S,, must be positive.

Before considering whether S, has positive real eigenvalues, the question of
causality must be addressed. The inverse Fourier transform of (—iw)™! is sgn(£) which
Is clearly not a causal integration operator. To preserve causality, we must consider
(—iw) to have a positive real part, that is, (—iw) » (—iw+¢e). This produces causal
integration because the inverse Fourier transform of (—iw+&)™! is H(t), in the limit as

£-0.

It is clear from the form of equation (5.10) that all orders of approximations to the
exact square root S, ha‘ve the same eigenvectors. The eigenvectors are those of the
operator D{ID,. Thus, the recurrence relation only adjust the eigenvalues. To check
whether the real parts of the eigenvalues of S,, {Re[A(S, )]}, are positive, we will
proceed by induction, by assuming that Re[A(S,,_,)] = 0. Since (—iw+¢) has a positive
real part, and the eigenvalues of DHD, are purely positive and real, the sign of

Re[A(S,,)] is also strictly positive.

The two terms were neglected in deriving the extrapolator given by equation
(6.14). They are the correction term of equation (5.8), and the commutator term of
equation (5.13). The result is the that the oneway extrapolators are as accurate as
geometric optics in the z —direction, but retain the accuracy of physical optics in the
z —direction. To the accuracy in the direction of extrapolation, consider the case of a
normally incident plane wave traveling in a medium that contains no lateral variations.
Thus all orders of equation (5.10) generate S, = —iw. Substituting this into equation
(5.11) results in

9 p-_, @ B (5.19)
0z u(z)

or

Py (5.20)



iuf dz
p = \/_’I‘_C':!T 0 U(Z)Po (5.21)

which is the WKBJ solution for P. (See equation 3.18 for a compatison). The examples
shown in the next section will demonstrate the accuracy of the solutions in the direction

perpendicular to the extrapolation direction.

5.5 An Example of Scalar Extrapolation: Love Wave Modes

As an example of extrapolating scalar wavefields, the problem of computing Love
wave modes in a laterally varying medium is considered. The example is useful for test-
ing the modeling method because the modes contain both a propagating and an evanes-
cent component. Also, because the analytic solution for horizontal layers is simple (the
mode shape does not change), it is easy to check whether the procedure is producing

the correct answer for the layered case.
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FIG. 5.1. The geometry for extrapolation modeling is shown. The initial conditions are
specified on the left, and the solution in the rest of the medium is determined by extra-
polation in the x~direction. The top surface is a free surface.
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Consider the geometry shown in Figure 5.1. The problem here is the computation of
the modes for all z and z given an initial mode shape at z = 0. The surface displace-
ments can then be obtained simply by picking off the solution at z = 0. The simplest
way to apply the results of the previous sections to the case of Love wave mode extra-

polation is to interchange the roles of z and z in the extrapolations equations.

The scalar SH-displacement equation is
(pe*+V- uV)u =0 (5.22)

where p is the shear modulus, and u is the displacement in the y —direction. Identifying

p with 17! and K with p~, the definitions for 1), and D become

H
0 1 1 o)
=V — — H = Vv .
D, M 32 _\/; and D '\/;6 67] M (5.23)
The extrapolation equation is
8 ~_ 1 1 ~
e U = TB Sn __\/B U (5.24)

where g is the shear velocity and the state variable % is
u = (ot u =vr u (56.25)

The recurrence for .S, is again given by equation (5.10) with x and 2 interchanged.

The square root approximations given by equation (5.10) are well known to model
accurately waves traveling within some cone of the extrapolation direction. The disper-
sion curves for the first and second approximations (156- and 45-degree) equations are
shown in Figure 6.2. The approximations have no evanescent zone in the k, direction
(lk;| > w/v), but they do model behavior in the k, evanescent zone (|k,| > w/v)
(Landers and Claerbout, 1972). This is shown in the right panel of Figure 5.2, which is
simply a replotting of the dispersion relation to show its behavior for both real and ima-

ginary values of k.

In a laterally homogeneous medium, Love wave modes have a solution to the SH-
displacement equation of the form (Achenbach, 1975, p. 218-220)

u(z,z,t) = U(z) exp it — g—-) (5.26)

where u(z,2,t) is the displacement in the y direction, U/(z) is the mode shape, and ¢ is
the phase velocity of the mode. For a layered earth structure the boundary conditions to

be satisfied are:
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FIG. 6.2. The dispersion relations for the first two square root approximations (15- and
A5-degree equations) are shown. The left panel shows the relations plotted in the con-
ventional manner while the right panel shows the relations plotted in a manner which
allows for imaginary values of k, (k2 < 0) and k, (k2 < 0). The exact dispersion rela-
tion is the straight line in the right plot. The extrapolation equations model waves well
into the evanescent zone on the k, axis.

—
—
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1) 9, U = 0 at z=0 (zero free surface stress),
2) [U] = 0 at layer boundaries (continuity of displacement),
3) [ud, U] = 0 at layer boundaries (continuity of stress).

The square brackets above indicate differences across layer interfaces.
For the simple case of a layer of thickness h with properties p; and u,; over a haif

space with properties p; and i, the mode shape is given by

Acos v,z O<z <h

Ulz) = [Acos vih exp[—ive(2-h)] 2z>h (6.27)

where

7 7
vy = =z kz and Va = Py IC, (5.28)
Bi Bz

The boundary conditions also impose the further restriction that

cot(v,h) = B KL (5.29)
He V2
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FIG. 6.8. The example shown is the extrapolation of a lower order Love wave mode for a
layer over a half-space. The extrapolation is from left to right, with the initial mode
shape shown on the left. The position of the layer is superimposed on the plot. The fact
that the mode does not change shape significantly in the x-direction after demodulation
indicates that the extrapolation solution is correct, and that the mode is being pro-
pagated at the correct phase velocity. The sinusoidal function plotted at the bottom is
the demodulation function-used. The frequency of the mode is 0.18 Hz and its speed is
1.04 km/sec. The plot has a 1 to 2 vertical exaggeration.

Equation (5.28) is the period equation for the simplest type of Love waves, and it has
solutions in the range

L

>k | >
ﬂ] lz'

9

Bz

With k. in this range, the mode is propagating in the layer and evanescent in the half
space. The period equation determines the relationship between « and &, and since it is
nonlinear, the modes are dispersive (velocity depends on frequency). The propagating

speed of the mode is given by

&
ko(w)

c{w) = (5.30)

To test that the extrapolation works for a layered case, an initial mode shape was
specified according to equation (5.27). The solution was then extrapolated in the
x —direction with a monochromatic 45 degree equation. For simplicity, the density was
assumed constant. At each step in the z —direction the solution was muitiplied before
plotting by the demodulation factor exp[iwz/ ¢(w)], with c(w) determined analytically
from equation (6.30). This tests two aspects of the solution. First, multiplication by the
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FIG. 6.4. This example is similar to the one shown in Figure 5.3, except that the mode
frequency is now 1.17 Hz,, and its speed is 1.12 km/sec.

demodulation factor effectively cancels the z —dependence of equation (5.26), leaving
only the mode shape. Consequently, the solution if done correctly should be the same at
all z—-steps. Second, if the solution, after multiplication by the demodulation factor
remains invariant with respect to z, then it indicates that the mode is being propagated
at the correct phase velocity. The results of propagating a low frequency and a high
frequency mode through a layer over a half-space structure are shown in Figures 5.3 and
6.6. The initial mode shape is plotted on the left in each figure and the solutions at vari-
ous points in x appear to the right of it. The sinusoidal function displayed at the bottom

of each figure is a plot of the demodulation factor.

The interesting case is when the model parameters vary laterally. For Love waves
we have run two such cases. The first case is a dipping layer which dips down from the
initial condition. The solution was again demodulated with a constant phase velocity
determined from the initial conditions; but since the medium now varies laterally, this will
not be sufficient to make the mode shape invariant with respect to ». The second
example is a dipping layer that dips up from the initial conditions. In this example, the
energy contained within the layer is diminished and is radiated into the half-space in the

form of SH body waves.



FIG. 5.6. A Love wave mode in a 20 degree down dipping layer. The plot is similar to Fig-
ure 6.3. The demodulation factor used is that of Figure 5.3. The characteristic of the
mode that seems to be preserved in the z —direction is that its spatial frequency in the
layer is preserved. Also, very little energy is radiated into the half-space.
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FIG. 6.6. In this example, the layer pinches out toward the surface. This time the mode
radiates energy out of the layer into the half-space in the form of SH body waves.

Conclusions

A set a extrapolation operators for the acoustic wave equation and the SH-
displacement equation have been presented. The operators can be made unconditionally
stable by ignoring certain terms in the recurrence relation. These term are low frequency

corrections of a higher order than the usual WKBJ corrections. This means that by



-79 -

omitting them the extrapolators are accurate to geometric optics in the extrapolation

direction and physical optics in the perpendicular direction.



