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An Inverse-Q Filter

Dave Hale

Abstract

Statistical deconvolutions such as predictive deconvolution, Mininum Entropy Deconvo-
lution, etc. perform best when applied to stationary data. The typical seismic trace, how-
ever, is highly non-stationary; and one persistent source of non-stationarity is attenuation.
Toward the objective of enhancing stationarity, a mathematical model of attenuation is
described which is consistent with currently popular models and, most importantly, leads to a

computationally efficient method for ""backing out' attenuation.

Introduction

A phenomenon commonly observed in seismic traces is that the dominant frequency in a
seismogram decreases with time. This attenuation of high frequencies is perhaps best illus-
trated by a synthetic example. Let the spike train labeled "z" in Figure 1 represent a
reflectivity sequence for a layered earth, and suppose we record the earth’s response to an
impulsive, vertically propagating plane-wave. If the earth were a non-attenuating, ‘'per-
fect”, oscillator, the response (neglecting multiple reflections and transmission losses)
would be z. In a "lossy" earth, however, the higher frequencies contained in the initially
impulsive wavefront are progressively attenuated, resulting in both a broadening and a
decrease in amplitude of the wavefront with traveltime. The trace labeled "g" in Figure 1
ifllustrates this progressive wavefront distortion at traveltime intervals of 200 msec. The

corresponding earth-response is labeled "y'".

Now suppose we want to "deconvolve” y to recover x. Any statistical deconvolution
method based on the assumption that y is stationary (as do most routinely used methods)
will yield a poor result. Traces 'dg'" and "dy', for example, are the results of applying

"spiking", predictive deconvolution to ¢ and y, respectively. As expected, a time-invariant
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FIG. 1. A synthetic example of attenuation. x represents a reflectivity series, g illustrates
the progressive distortion of an initially impulsive plane-wave in an attenuating earth
(@ = 100), and y is the corresponding earth response. dg and dy are the spiking decon-
volutions of g and y, respectively.
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operator cannot deconvolve a time-varying waveform; the operator has done too much at

early traveltimes and too little at late traveltimes.

Seismic data processors, of course, have developed ways of circumventing non-
stationarity. One simple technique is to divide a trace into several smaller windows, assume
stationarity within each window, deconvolve each window separately, and then blend the
windows together. However, because statistical deconvolution processes generally perform
best when given long, stationary windows from which to estimate an unknown seismic
wavelet, one must choose window lengths carefully. Indeed, papers by Wang (1969) and
Foster et al (1968) treat the subject of "optimum" window lengths in great detail. Adaptive
deconvolution is another recourse for non-stationary data. But even with adaptive methods
one must choose an adaptation rate with the same considerations as those given to choos-
ing window lengths. [See, for example, Griffiths et al (1977).] The point is this: any sta-
tistical deconvolution process should perform better with stationarity than without sta-
tionarity.

How, then, can we make seismic traces more stationary? We routinely compensate for
spherical divergence, one source of non-stationarity, by applying time-variable gain to our
traces. We might hope to further improve the stationarity of seismic traces by compensat-
ing for attenuation or, more specifically, by "inverting" the attenuation process. The pur-
pose of this paper is to describe an efficient method for inverting attenuation in seismic

traces.

M odeling

Before we discuss inversion, we must first specify a mathematical model of attenuation.
Suppose a horizontal reflector at a depth 2z in the earth "explodes" at time £{=0. A com-
monly used model of attenuation [e.g., Trorey (1962)] states that the waveform recorded at

the surface would have a Fourier transform proportional to

_lwlz _wz

B(w) = exp 20w 'u

where v is propagation velocity and @, is an intrinsic property of the earth which
parameterizes attenuation. Both v and @, are assumed constant with respect to z and w.
(Although the following discussion can be generalized to depth-variable Qo &g Will, for sim-
plicity, be assumed constant.) The corresponding seismic trace would be a zero-phase
waveform centered at £ = z/v. Such a waveform is physically unacceptable for it implies

propagation of energy at a velocity greater than v. A more realistic model! is
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B(w)

I

exp —%—%—i—s——i%z——i;o(w) (1)
where ¢(w) is chosen to make the waveform beginning at f = z/v minimum-phase. A
thorough, physical justification for equation (1) is given by Aki and Richards (1980, p. 167-
186). [Choosing ¢(w) to be the minimum-phase corresponds to including velocity dispersion
in the model, and v in equation (1) must now strictly be thought of as the high-frequency
limit of velocity.] Further motivation for the choice of phase in equation (1) lies in the result-

ing efficiency of the modeling and, particularly, the inverse-filtering process.

To see how equation (1) can be used to model attenuation, first replace z /v in that

equation by two-way, vertical traveltime 7:

B(r,w) = exp

—M—iw’r - i;o('r,w)] (2)

The impulse response of an earth with a single, horizontal reflector at depth z=u71/2 is
given (neglecting multiples) by the inverse Fourier transform (/FT) of B(T1,w) with respect

to w:
b(rt) = IFT [B('r,w)].

Now, ¢(T,w) is a linear function of T since (1) the minimum-phase spectrum is the Hilbert
transform of the logarithm of the amplitude spectrum and (2) the Hilbert transform is a linear

transform. Therefore,

B(21,w)

exp —J%Iéil— 2i0T - i2;o('r,w)]

B(t,w)  B(T,w)

and, by the convolution theorem,
b(21,t) = b(n,t) *b(1,t)

where "*" denotes convolution with respect to f{. In general, the impulse response to a

reflector at a 'depth’” of jTis
b(jrt) = bi(rt)

where bi(1,t) denotes j—1 self-convolutions of b(r,t). Now let 7 denote the temporal sam-

pling interval in our seismic experiment. Sampling bi(T,t),
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bl = bi(1iT)

is the impulse response for a reflector at a "depth' of 7 sampling intervals. We note from
the linear-phase term in equation (2) that the first j samples of b7 are zero, so we define a

shifted version of b7:
‘hj = sz+j

where, as before, g7 denotes j—1 self-convolutions of g. g! is just the discretized version

of
q(t) = IFT {exp ) 1¢(T,w) (3)
20,
and g/, unlike b7, is minimum-phase for all j (= 1,2, - - - ).
Now let z; (i = 1,2, - - ,n) denote a sampled (at interval T) sequence of n. reflection

coefficients. The impulse response y; of the corresponding n-layered earth is found (again

neglecting multiples) by superposing the responses to each of the individual reflectors:

Yi = .’Elbil +.Z'2b1'_2 + -+ xnbf
or
i
vi = )9l (4)
i=1

Equation (4) looks like a convolution except for the superscript j on g. In fact, like convo-

lution, equation (4) can be thought of as a matrix multiplication. An n=4 example is

(o]

Y1 ¢ 0 0|z,
Ya gl g6 0 Oz,
ys| ~ |gd g% 9§ O |zs ()
Ya 93 9§ qf qd| %a

which we abbreviate as y = @z. The "@" matrix is lower-triangular because qj is causal.

We can now see how "g" and "y'" in Figure 1 were produced. First, g! was derived
numerically using equation (3) with @; = 100 and T = 2 msec. [Specifically, the minimum-
phase g! was obtained from its zero-phase equivalent by spectral factorization via the Toe-
plitz method (Claerbout, 1976).] Then y was computed using equation (4). Since
g’ = g77! * g, only g7 and gq' need be held in memory at any stage in the matrix multiplica-

tion. qj was output every 100 samples (200 msec), resulting in "'g "' of Figure 1.
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Naturally, once we have the impulse response y of our lossy earth, we can then find

the response 2 to any source waveform f by
z =f'y
or

2e = Dfi-i¥% = NS LAk
7 i

k<j

Thinking in terms of matrices,

z = Py = Fga (6)

where /" is a Toeplitz matrix with elements F; = f,_;.

Inverse-filtering

The deconvolution problem is to find z given z. From equation (6) we have
r = Q—ly = Q"IF“IZ

Notice the order in which these inverse matrices are multiplied. If F and, hence, F! are
known, then this ordering presents no difficulty. But if F is unknown and we attempt to
estimate F' via statistical deconvolution, then we might hope that #~! and §~! commute so
we could estimate 7 from the stationary @ 'z. F~! and Q7!, however, do not generally
commute (just as 7" and & do not generally commute), and we should at least be aware of
the error in assuming that they do. If the inverse of the source waveform is short and glis

almost a delta function, then this error may be negligible.

In any case, we need @, whether we apply it before or after 7~ !. Since & is lower-
triangular, we can solve equation (4) or (5) for =z by back-substitution, computing
Zn,xz, ' X, recursively; but this method turns out to be computationally less efficient

than using @ directly. As a first guess for @1, we might expect it to contain p! where

} @

Since g7 is minimum-phase for all j (= 1,2, - - - ), we know that p* is minimum-phase for all

p! *q' =6;ie, plis the inverse of ¢! derived by sampling

p(t) = [FT{exp izl-%ll+ ig(T,w)
0

i(=1,2,---); and we can define a lower-triangular matrix P with elements Py = pi_;.
Just as the columns of @ can be derived by the recursion g/ = gJ~! ¥ ¢!, so the rows of P

can be derived by the recursion p* = p*~1 *pl. P is not, however, the inverse of @ as is
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perhaps best illustrated by the n=4 example:

§ O 0 Ojflgd O O O 1 0 00
?p8 0 Ooj|jgl g8 0 O {1 00
$p$p§ O|lgd gf g 0| = it 1 of ¥/
$ p2 ot pd|lad 98 qf q¢ § p§ pi 1

For example, (PQ)z; =(p® *g!), =(p! *p! *qV), =(p' *6), =p} #0.  Although
P@ # I, itis Toeplitz and lower-triangular as is its inverse which we define as

c 0O O O
1 SU 0 0
S = 2 §; 8¢ O
3 Sz §1 S¢o
where the s; are given by the recursion
i
s = —upfsiy; 3 sp=1
i=1
Equivalently, s *(1,p!,p%,- - - ) =4. (Remember that multiplying two Toeplitz, lower-

triangular matrices is like convolving two time-invariant, causal filters.) So the desired

inverse is @1 = SP;i.e.,
x = SPy

or
i i
r = Zsi—j ipj,-—kyk
j=0 k=0

In practice, one may not wish to construct S, even though it is fairly inexpensive to do so.
First, the off-diagonal elements of Pg will likely be small (< 1) for typical values of Q)
(~100); and, secondly, if our goal is only to reduce non-stationarity, then we gain nothing in

applying s, a time-invariant filter.

Approximate | nverse-filtering

Even with the recursion pi = p"“1 * pl, the computational expense in multiplying P by
a seismic trace 2 is potentially great. In practice, however, the expense is comparable to
that of ordinary convolution, the reasons being that (1) p! can be approximated by a very

short operator and (2) p' can, therefore, be truncated to be relatively short. Recall that p!
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is computed from equation (7) and that the exponent |w|7/26); in that equation ranges
from zero to a maximum value of 77/ 28, at the Nyquist frequency. For realistic earth values
of @y (R100), the amplitude spectrum will be almost unity for all w between zero and
Nyquist. pl, therefore, is almost a delta function and can be approximated rather well by
pl A (1+48&,—¢), a two-term filter where 0<e<<1. Notice that the two terms of this approxi-

mate add to unity since equation (7) prescribes no amplification for zero-frequency.

The traces labeled "Ppq" and "Pyy" in Figure 2 illustrate the results of using this
two-term approximate in inverse-filtering traces g and y of Figure 1. pl was computed by
the Toeplitz method to be the best (in a least-square-error sense) two-term inverse to q1
for Q¢ = 100. ¢ was found to be £~ 0.0064. Also shown in Figure 2 are the results,
"Pyoq' and "Ppy", of using a ten-term approximate p!. The cost of computing p* in these
examples was reduced by restricting the maximum length of pi to be forty samples. In both
examples, the filter s was computed and applied; the errors in the inverse-filtered traces

result solely from approximating p1 with short operators.

The errors in using the two-term, approximate inverse are more clearly understood by
comparing the Fourier amplitude spectrum of (1+g,—z) with that of the exact p! given by
equation (7). Figure 3 plots the ratio of these two amplitude spectra as a function of fre-
quency. The small deviations from unity become magnified by repeated self-convolutions of
pl, so that the inverse-filter pi becomes progressively worse at later traveltimes (large ).
For seismic data, with a more limited bandwidth, the errors may not be so significant; and &

could, conceivably, be chosen to minimize the error in the "seismic band'.

One further modification to p! may be desired. At late traveltimes, high-frequency com-
ponents of seismic signals may have been so severely attenuated as to be submerged in
ambient noise. And with Vibroseis data, we can be certain that frequencies below and above
the sweep frequencies contain only noise. We can avoid excessive amplification of high-
frequency noise by modifying the amplitude spectrum of p!l. Figure 4 illustrates the results

1 of length ten with an amplitude spectrum given by

of using a p
A(w) = [exp(~|w]| 1/ 280) + aw*]™! where a was chosen so that A(wnyquist) = 1. At low
frequencies the exponential term dominates, and at high frequencies (approaching Nyquist)

the second term drives A(w) back down to unity; the result is a "bandlimited" inversion of §.
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Speculation

Nothing has yet been said about the problem of determining &y; some reasonable esti-
mate of @ is needed to compute p!. Methods do exist for determining a &g [see, for exam-
ple, Jacobson et al (1981)]; but, if the inverse-filtering process is fast enough, the best
way of determining a p! might be to try several and then "pick’” the best result. The
inverse-filtering method described in this paper was, in fact, motivated by the following pos-
sible (being optimistic) application. The typical, statistical deconvolution problem is to
determine, say, m coefficients of an filter which, when convolved with a seismic trace, max~
imizes (or minimizes) some objective function of the output trace. Why not ask for one more
number, @, or even more simply, £ in the two-term approximation to p!? In a minimum-
entropy approach, a fast line-search over ¢ might be performed to determine the value which
maximizes ''spikiness’. A similar approach was used by Gray (1979) to reduce non-
stationarity due to spherical divergence; he determined an exponential-gain constant that
minimized spikiness. The feasibility of "minimum-entropy inverse-Q filtering’’, however,

remains to be seen.
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FIG. 2. Approximate inverse-Q filtering. z is the reflectivity series from F}gure 1. P,q and
Pgy are the results of using a two-term p! in filtering g and y of Figure 1. P oq and P,gy
are the results for a p! with ten coefficients.
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FIG. 3. Ratio of Fourier amplitude spectra for the two-term, approximate (1+s,—¢&) and the
exact p! as a function of frequency.
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FIG. 4. Bandlimited inverse-Q filtering. z is the reflectivity series from Figure 1. Piog and
P,oy are the results of using a bandlimited, ten-term approximate to pl.
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From '"The Swords of Lankhmar'’, By 'Fritz Leiber"
Pardo’s First Postulate:
Anything good in life is either illegal, immoral, or fattening.

Arnold’s Addendum:
Anything not fitting into these categories causes cancer in
rats.

Drive defensively, buy a tank.

"We have met the enemy, and he is us."
-- Walt Kelly

What this country needs is a good five cent ANYTHING!

Hand: A singular instrument worn at the end of a human arm and
commonly thrust into somebody’s pocket.

George Orwell was an optimist.

We really don’t have any enemies. It’s just that some of our best
friends are trying to kill us.

Time is nature’s way of making sure that everything doesn’t happen at once.

Today is a good day to bribe a high-ranking public official.

Death is nature’s way of telling you to slow down

Deliberation: The act of examining one’s bread to determine
which side it is buttered on.

Certain old men prefer to rise at dawn, taking a cold bath and a long
walk with an empty stomach and otherwise mortifying the flesh. They
then point with pride to these practices as the cause of their sturdy
health and ripe years; the truth being that they are hearty and old,
not because of their habits, but in spite of them. The reason we find
only robust persons doing this thing is that it has killed all the

others who have tried it.
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