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. Theory
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Abstract

Our aim in this paper is to derive the equations to be used in generating a 2-D synthetic
seismogram by wavefield extrapolation with the wave equation. We are going to work in the
(w,k,) domain. The choice of this domain is motivated by the fact that it will be straightfor-
ward to include attenuation effects by specifying complex frequency-dependent elastic
moduli. We derive the appropriate Green’s function and an expression for the reflection

coefficient at a liquid-solid interface.

1. Calculus of the Green's function for the wave equation,

Consider the wave equation when the driving force is a Dirac source at time £ = O and
at the point (x =0,z =0). Its solution is the Green’s function G(z,z,t) and it is given by:
2 2 2
0 + d 1 0

322 T 322 " o % G(z,z,t) = —2n6(x)d(=2)6(t) (1)

Taking the triple Fourier Transform of equation (1) using the definitions

Flgiky,) = [ [ [ f(zz,t) ™™ ™" 7% gy gz qt

U,z ~ ik z +iwt

1 -
f(z,2,t) = Wfff Fky kg 0) e dk, dk, dw

we obtain

G(kz ’kz ,C\)) = 27

2
k2 + k2 - E
v
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which gives for G(k_,k,,w)

Glky ke, ,0) = i’;
kzz —( 'UT_ kz'?')
a X
6
Z Y
FIG. 1.
s el - kz sind
By definition of the Snell’s parameter p (see figure 1), p = T T, o we have
ky = :—sinﬂ. Therefore
2 2
9—2——1(:,5 = '&}T cos®d > 0
v v
and
27
Gk ke, 0) = o 172 2 172
W
lkz F—kzz kz + ;‘E——kf] ]
This gives
+oo — kg2
e dk
G(kz,w,z) = f o 172 : o 172 (2)
kz—'['u—z-'—kzz] kz+ ;2—-—’(:3] ]
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As we want a causal function for G(k_,c.,z ), we are going to take the following contour
of integration (Morse and Feshbach, 1953, p 850),

Im k,
z< O
_______ | Re k,
! > |
Vo jwt 2 w2 _ 2
Iy v2 KL v2 kx /I
\ /
\ /¢ z>0
.\
AN
FlG. 2.
Using Cauchy’s integral formula in equation (2}, we get
G(kg,02) = 0 z2 <0 (3)
172 172
—'Ll%—kzz] z zl%—kﬁ] z
Glk,w2) = im |2 - e 2 - - z >0
W k2 W _ kz
22 z 2 z

This formula contains the upcoming and downgoing waves. It is necessary to separate

2 12
k,v

w

them for every w in order to write G(k,,w,2) as a function of -:i;— [ 1-

As we have

2 172 kv R 11/2
W 2 - W z
[;E""kz = . Sgnw 1 - [F] ]
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we can rewrite G(k,,w,2) as
‘Uk 172 vk 2lis2
—t—syno[l - ——] I iu—sgnull - —’l ] z
| a1 -2
Z 12 vk, B 1172
1 - 1 -
w

shedr el
TR SR

G(kzsw:z) = G(kz;—w:z) (4)

Gz, ,2) = im

——sgnw

E‘2—.5‘7?,&)
v 9

which gives

Glkg,,2) = im

Ie“’

1 -

and

(therefore G(k_,w,z) is an even function of w ).

The downgoing wave (D#) and the upcoming wave (UW) are represented by the fol-

_2}1/2
vk,
Al

S ['U’Cz 2112

lowing parts of the total Green’s function,

. e
DW: i

D
v w

2|1/2
vk
-]
e
21172
vk,

w

—im
1 -

@
J;

Remark: We could have put the source at the point (z =x4,2z =2t =£;) and the prob-
lem would not have been changed in principle. The Green’s function solution of the full wave

equation would have been instead

eilc,zo + ik zg —iwly

Glky ke, 0) = >
kzz - (':;T— kzz)

and in the (w,k;,2z) domain, the solution would have been
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G(kz,w;z) =0 Z <ZO

uz 2 172
i l:é——kz (z —zg)

1*22;0 - 'I-(Jto
2 172 e

w 2

]

Glky t0,2) = 4T

Z>ZO

2, Synthetic seismogram for a liquid-solid interface,

We can model the effects of the reflection coefficient for a liquid-solid interface with
the following experiment (figure 3): put a source function s(x,t) at the sea-surface, go to
the sea-floor by using the Green’s function derived previously, multiply by the reflectivity
function and use wavefield extrapolation to the surface to get the synthetic seismogram. In
our discussion we will consider the source function separately from the reflection coeffi-

cients.

source C=-1
liquid /\
(a,p) \ / z

c(e)

solid (cx',p', f')

FIG. 3.

Adding the source function, the right-hand side of equation (1) becomes

@ 8 1 &

327 327 - ’;}—2—.6? Glz,z,t) = —2r6(x)6(2)6(L) ** s(x,t)

where ** denotes convolution in space and time.

The total Green’s function becomes
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e s e.'

Glotal(kzaw’z) = S(k,,w) i

where S(k,,w) is the two-dimensional Fourier transform of the source function, and
'uzkf 172

1 -
o

W
]Cz='1—}—

The Green’s function for the downgoing wave is

-k, z

Gpw(kz,w,2) = im S(k;,0) e—k——
z

To come back to the surface, we must multiply by the well-known extrapolation func-

tion, which is

the total wavefield will be a superposition of primary and multiple reflections. Since we
know that the reflection coefficient at the air-water interface is very close to —1, we can

write the total wavefield as

1

1- — Rik, Az S(kz’w) =
e
1+ Clk,,w) X,
e Rik, Az e 4ik, Az
= S(k,,co) C(k,,w) —_—— Ce(kz,w) —————— (5)
k; k,

This series comes form the fact that the first sea-floor multiple has traveled a dis-

tance 2Az while the primary has traveled only Az. Their amplitudes are, at each bounce,
vk,

muitiplied by the reflection coefficient C(9(k,,w)), where sind =

The synthetic seismogram is obtained by taking the inverse Fourier transform of equa-
tion (5),

flz,t) =
i e Pt g tHate W,z + it
- e ¥ Y
TEE JJ | Clez) i Coleg,) =———+ S(k,,w) e dk, d e
R 1172
k
where kzz-@)—1—vz ]
v ©
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3. Reflection coefficient.

For a liquid —solid interface, the reflection coefficient is given in many books and arti-
cles (see for example Ewing et al, 1957). We give an outline of the derivation of this for-

mula. The notation is given in figure 4.

iy v)
-~V

9 liquid
9 («,)

L ]

FIG. 4.

In terms of P and § wave potentials we have for the incident, reflected and transmitted

waves
ik, (zrsind+z cosd) —iwt
d, = Aje %
T = 1
ik, (z sind —z cosB) —iwt
¢ = Aze &
, =
andd =, + &, =0
, ik {xsind_ +zcosd, ) —iwt
b, = Ae % » »
¥, = Be 'Ucﬁ,(z sin®'y +z cos W) —iwt
: =
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and (I>'=<I)t, ‘P,=‘I’t.

w W w
ky, = — ky = =— kg =
[ o o al ﬁ ﬁ,
Snell’s law gives
sing _ sing,  sind’g
a al 8)

Continuity of stresses and displacements must be applied at the boundary, giving:

i) displacement: v, = w’, or

6;{3___: 0%’ + oy’
dz 0z oz

ii) stresses: ¢’,;, =0, o0,, =0°,, or

21, 2.7, 27,
0% _ o*% , 8%

Bz dz dz? 8z? ©
*d i 0 J 828 ARV
NS+ 20 9z? = dzdz | A" A% +2“[ 522 | Bzoz

The reflection coefficient is obtained by solving the preceding system and this gives

— pa cosd’,

.3
p’a’cosy ‘(1 — 2siny7g)? + E;L sin®y cos®¥’, cost’s
oo

(6)

C =

, ’ H ’ 4 ’3 H Ve ’ ’
p'a’cosy (1 — 2sin®97,)? + ng? sin®9 cos¥’, cosv’s | + pa cos¥,

or

where A and & can also be written:
.2 .8 2 1/2 .0 172
A = p’a’cosd | (1 —-ZLzsinzﬂd)2 + ﬂ;L,—sineﬂa [1 - g—z——sinzﬁ] [1 - %sinzﬁ] ]
o o ldol o

_ a? 172
B = pa |1 - ——sin®*y
«

This formula is valid for the angle 3 less than the smallest critical angle.
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If = o, there is no critical angle and equation (3) holds everywhere.

If 8’ < o < o, there is one critical angle defined by ¥, = sin™! o((x’ ’

Formally, the mathematics can be derived in the same way for ¥ > 1,. The difference is
that cosy’, is going to be pure imaginary, implying that the transmitted P energy will be
evanescent in the 2z direction. As we do not want to increase the energy with propagation,

we must have a minus sign in front of the square root. Therefore
o 12
" e N —_ 14 ine _—
cos¥’, —z[—az sin<yd 1]

In this case the reflection coefficient is complex-valued, which means that there is a

phase shift after critical angle. The expression for the reflection coefficient is thus given by

_ D+i(E-F) _ ,
c(9) = D+iE T - C,(8) + iCo() (7)
where
_ D+ E® - F®
Ci(9) = D? + (E + F)?
- 2DF
Co(n8) =
(%) D? +(E + F)?
and

2
D = p’a’cosd (1 —ZLZ sin?9)?
o
2 172 ag’3 .9 12
E = [a—zsinzﬂ -1 ] p’a’cosy ;;L,sinzqﬂ [1 - %z—-sinzﬁ]
o o

F = pa | Z-sin?s - 1
[ed

o ]1/2

If o < B8’ < o, we have two critical angles

_ o1 X
Vg, = sin ra
Y, = sin‘lg,

For 8§ < 19(,1, equation (6) holds for the reflection coefficient.
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For ¥;, <8 <4, equation (7) holds for the reflection coefficient.

For 4 > 4,,, we have to consider the pseudo —S —transmission angle defined like the

one for P waves by
2 172
ucos,lgrsn = ,‘: [iz__sinzpa _1 ]
o

accordingly we obtain for C(1)

_ G-iH _ .
c(®) = Tria - E(8) + iE5(8) (8)
where
G + H?
B = X
) = e
_ —2HG
B = 5
and
.2 ] .3 .2 2( 0 172
G = poccoss | |1 —2B8 s | — 2B sin?y | 2 _sin?s - 1 B sins —1
az aza' az ﬁz

.2 e
H = pcx[o;z sin219—1]

4, Reflection coefficient in the (w,k_) plane

To define the reflection coefficient in the (w,k;) plane, we must give its value in the
four quadrants. It is possible to do that utilizing the properties of the 2D-inverse Fourier
transform of the reflection coefficient, that is ¢(f,z). This function must be real, sym-

metric in £ and causal.
First condition: Feality.

A general function of 2 variables can be written in terms of its even and odd parts as:
C(w,k;) = Re E F, +Re O, + Re G E, +Re 0, 0,
+i(lm £, E, +1m Ee O, +1m G £, + Im O, 0)

where Re refers to the real part and Im to the imaginary part, Ek, refers to the gven part

of k., O, refers to the odd part of w, and so on.
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Since the Fourier transform of a real-even function is real-even, and of a real-odd func-

tion is imaginary-odd, to guarantee c(z,t) to be real, C(w,k,) must be of the form

C(ewkz) = Re B E, +Re O 0, +1 (Im B, O, + Im Oszu)

Second condition: Symmeltry in z.
The condition of symmetry in the z direction implies that C(w,k;) = C(w,~ kz), thus

we are left with
Cleky) = Re B E,+11m E. O,
if we call
Clwllkz ) = Cillel,lkz]) +4 Colw], ]k ])
then
Clwkz) = Cil{wl,lkz]) + i sgnw Ca(] @], k2 1)

Let us define now C(|w],]k;]). We can use (6), (7) and (8) and replace sind by

vk
Z . In fact it is better to write C as a function of (— iw) to help inspection for causality

later. (6), (7) and (8) become

‘-B’ .
cullkl) = 420 = ciollkD +i ol kD (@

where

A = pio [(—w)2 + o?k2 ]"e

[[(—w)z + 28%7 ]2 - ﬁ@;“"ﬁ[(_w)z + %k ]w ’("“")2 * A0S ]W]

B’ = pa(—iw)* [(——73&;)2 + a?kp ]1/2
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with
2.2 172
. vk k2
(—iw)| 1~ —7 for 1-—”2“ > 0
1/2 @ w
(—iw)? + vPk?2 =
2.2 172 Rk 2
kaz—1 for 4 _ z==<0
w? w
\
whence

Re(4'—B") +isgnwlm(A” — B")
Re (A" + B*) +isgnwim(A® + B”)

Clwkz) =

Third condition: Cousality.

To verify causality of the reflection coefficient, we are going to apply Muir’s rules:
(Claerbout, 1979. SEP 16, p 141-134). Namely:

i) The sum of two causal operators is causal.

ii) The product of two causal operators is causal.

iii) The inverse of a causal operator is causal if it has a positive real part.

iv) The square of a causal operator is causal.

We know that (—iw) is causal (Claerbout and Kjartansson, 1979. SEP 16, p 131-
140). ‘

172 2
Therefore |(— iw)? + vRk2 ] and [(— iw)? + 287%kr2 ] are causal.
This implies that A* — B* and A* + B* are causal.

To check the causality of C we have to verify that
Re[Den = A’+B’] >0

To do that, it is important to write — iw in the form — iw + &, so that when we will look
at the real part of Den it will be the true one and not the imaginary one. We will take the

limit for ¢ » O to determine the sign of the real part of Den.
We have to distinguish the three cases:

Da = a

For this case

Den = Den1 (Den2 + Den3) + Den4
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with

Den1 = p'a’(—iw + &)

1/2
oPk?
(—iew + £)?

2
Den2 = [25'%,2 +(—iw+ 8)2] (10)
_ .3 ,zkz 172
Den8 = —4,ﬁ—kf(—iw + £)? 5
o (~iw + &) ——zw+8)2
5 'zkz
Dend = pa(—-zw + &) + m

After calculus to the first order with respect to £ we find for Re Den

,zkz 172
1 — —_]
wz

12

172
ofk?

R

g2k

wz

pas (1 — 1 -

.3
(2822 — o + k22

1/2]

g - 8k

+ poswt
2

which is obviously positive.

Therefore C(w,k,) is causal.

A = a <o
In this case

If9 < 9, = sin"! (a/ "), then Den is the same as in (10) and the real part is posi-

tive.

If 8 > 9., then for this case we can write also Den in the form
Den = Denl (Den2 + Den3) + Dend

but with

Den1 = p’a’(—iw + ¢) Cint

172
ofk? ]

Den2 = [2p2kE + (—iw + o) ) (11)

1+

(—iw + g)? (—iw + &)?

—44p°3 . o fkf i
Den3d = ~ kAA-iw+ )| - ————1

5'215:2 ]1/2
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1/2
a’kp ]

Dend = i po(—iw + ¢)° l— m

After calculus to the first order with respect to g, the real part of Den is given by

172

2,2 172 . 2.2 12 /21,2
prac [t = LKe | AT pon | R g S
P a 7 ? w?
12
5 | FkE
+ pow 71
&

which is positive and therefore C(w,k;) is causal.

i) a < g <

sin"Y(a/ a’), then Den is the same as in (10).

fil

If8 < 1961
If 9, < ¥ < ¥, = sin"(a/f), then Den is the same as in (11).

= cg

If8 > 1302, then for this case, if we write

Den = Deni1 (Den2 + Den3) + Dend

we have
2; 2 172
o~k

Den1 = p'o’(—iw + 14+ —=

pra(—iw + g) (—’iw+s)2]
2
Den2 = [25'%,2 +(—iw + 8)2]

-3 Rk ? 1z 22 1/2
Den3d = ika(—'i&) + 8)2 — —',—z—z—"l - ——5—’—2—-
o (—iw + &) (—iw + &)

,zkz 172
Dend = ipoa(—iw + £)° il -

(—iw + )3

After calculus to the first order with respect to &, we find for Re Den

T

,zk 2 172
poe’ -1

which is positive. Therefore C{w,k,) is causal.
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In the next paper we discuss the implementation of these equations.
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Admiration: Our polite recognition of another’s resemblance to
ourselves.

"Friends, Romans, Hipsters,

Let me clue you in;

| come to put down Caeser, not to groove him.

The square kicks some cats are on stay with them;

The hip bits, like, go down under; so let it lay with Caeser. The cool Brutus
Gave you the message: Caeser had big eyes;

If that’s the sound, someone’s copping a plea,

And, like, old Caeser really set them straight.

Here, copacetic with Brutus and the studs, -- for Brutus is a real cool cat;
So are they all, all cool cats, --

Come | to make this gig at Caeser’s laying down.

It is the business of the future to be dangerous.
-- Hawkwind

NOBODY EXPECTS THE SPANISH INQUISITION

“Either I’'m dead or my watch has stopped.”
-- Groucho Marx’ last words

You might have mail

Albert Einstein, when asked to describe radio, replied:
You see, wire telegraph is a kind of a very, very long cat.
You pull his tail in New York and his head is meowing in Los
Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there.
The only difference is that there is no cat.

Misfortune: The kind of fortune that never misses.

Artistic ventures highlighted. Rob a museum.

Main’s Law:
For every action there is an equal and opposite government program.

It is said that the lonely eagle flies to the mountain peaks while the
lowly ant crawls the ground, but cannot the soul of the ant soar as
high as the eagle?
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