Restoration of Missing Data by Parsimony in the Frequency
Domain

Jeff Thorson

Basic Problem

Consider the problem of expanding a two-dimensional data set, such as a seismic
reflection profile, by interpolation or extrapolation. Intuitively it should be done in such a
way that no new information is added to the expanded data set. 'New information', such as
the truncation of a bed, high frequency components or an event interpolated at an unrea-
sonable dip, is essentially undesirable information, and can be recognized as such by the eye
on the seismic section. However, if further processing (e.g. migration) is performed, the
artifacts may be transformed into apparent events that are difficult to distinguish from real

events.

In the case of a gather of time traces that are sparsely or unevenly sampled in the
spatial () direction, padding the gather with zero traces is injecting new information into it
in the form of high spatial wavenumber components in the (k,,») domain. Looking at the
zero-padded gather back in the (z,f) domain it is obvious where the real information does or
does not lie; a particular domain must be selected where the essential information is
hypothetically local. For example, if it is claimed that a gather shall consist only of straight
dipping continuous events, the Fourier transform domain localizes this information: valid
events are alighed on straight lines passing through the origin. Once a domain is defined in
which information is local in some sense, filtering may be applied in this domain. Spurious
events originating solely from the padding of zero traces in the (,f) domain may be removed
as far as they do not correspond to the model for real data. As a consequence the padded

traces are no longer zero, but some smooth continuation of the real data.

Two general steps are involved here. First, a desired field must be estimated by exa-
mining data in information space (the selected domain where information is supposedly local).

Second, the data itself is extrapolated to approximate this estimation as well as possible,
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Thorson 2 Hestoration of Missing Data

subject to constraints. We shall always impose the constraints that the original data in the
data space (the (z,f) domain) remains unchanged; the variables in the procedure are the
samples of the padded traces.

Formulation

The discussion in the previous section has been very general; let us now formulate the
problem specifically. Assume first a unitary transformation F from data space (z) to model
space (y). A vector x in the data space can be partitioned into two pieces; x, consisting of
those elements in the region to be extended, and xz consisting of those elements of the ori-
ginal data. Let S (''select”) be the projection operator that zeros out the Xz component of

any x. The transform F may also be partitioned into pieces (prime indicates transpose):

Restricted Transforms domain range
FA = FS X4 Yy
FB = F(I "-S) Xp Yy
Fa = SF’ y Xy
Fz = ((-8)F y Xp

From now on we will be concerned with the following problem: minimize y'Wy under the con-

straint that the original data be fixed.

min y'Wy with constraints Fpy = xp (2)
v

W is considered to be a diagonal matrix, so that the functional y'Wy is simply a weighted
least squares energy of the vector y in information space. The constraints F; = xj restrict

any solution y to honor the original data xz.

The estimation step is involved with selecting the weighting function W in model space.
To see this, suppose a desired function g has been given (by some estimation) in model
space that y should be closest to in some sense. Minimizing ||y/ g] . (y/ gis termwise divi-
sion) is equivalent to setting W = 1/ |g| ?. Note that in specifying W only the amplitude of
the desired g need be given, not the phase. Two things are crucial for the minimization of (2)
to work: the nature of the constraints and the nature of W. Equation (2) has a trivial solu-
tion y = O if there are no constraints supplied, and with respect to continuity of the func-
tional y’'Wy one would imagine that a ""good" solution may be obtained only if the constraints
provide enough support to the function y. For the case of interpolating a new trace in

between each original trace, the constraints are fairly dense in (z,t) space.
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Thorson 3 Hestoration of Missing Dota

On the other hand, if W is constant, the interpolated traces are identically zero. That is,

min yYWy = w min Xx’F'FFx = w min x’x
v z z
with the constraints xp = constant gives the obvious solution x, = 0. Since the estimation
y'Wy is biased toward smaller total energy, the values of W have to have a sufficient
amount of dynamic range to make the spectrum y’y look like the inverse of W, that is, the

desired spectrum g’'g.

Implementation

There are various ways to perform the minimization of (2). First, the unknowns to be
solved for may be taken to be the vector x,. Partition (2) into A and B spaces, using defini-
tions in (1):

.

F X
Fg]W[FAFB] 4

Xp

min [x}, X3 ]
ZA

Making the variation of this functional over z, zero yields the linear system
FiWF x, = —-F;WFgxp (3)

(Claerbout, SEP-25, p. 3).

Alternately, one may choose to solve a system whose dimension is as large as the
dimension of x5: the data region. By introducing Lagrange multipliers, the minimization of (2)

is equivalent to

mir)} YWy + N (Fpy — xp)

V.
where the dimension of the unknown A vector is the dimension of xg. Taking variations over
y vields Wy + FpA = 0 while taking variations over A gives the constraint equation

Fpy = x5. Suppose W to be positive definite. Then y = —W~!F3), and together with the

constraints gives
F'BW_IFBK = —Xp (4)

Equation (4) allows to solve for lambda, and once lambda is known, y and X4 can be

obtained:

x4 = Fay = —F4WIFp\
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Thorson 4 Restoration of Missing Data

For a two-dimensional data set, the size of the linear systems (3) or (4) are prohibi-
tively large for a direct solution. If the transform F is taken for example to be a two-
dimensional DFT, the systems (3) and (4) are far from being banded. Two iterative methods
may be used to approximately solve (3) or (4), which for example do not require knowledge
of the Hessian: steepest descent and the conjugate gradient method. The algorithms are
described in figure 1. One iteration of the conjugate gradient method is worth about two
iterations of steepest descent, while taking only a minimal amount of extra time and storage

over that of steepest descent.

Solve: Qx=b

Steepest Descent Algorithm

Conjugate Gradient Algorithm

Initial X, =0 Initial X, =0
Gradient g9, =Qx, —b Gradient g =Qx, —b
0X, = =Gy, Y =950,
for £k =0,1,2, - .. for & =0,1,2, .., dim(Q)
dgk = ng 691: = ng
o = &L O = _JL
909", 0x;. og;,

X+ = X — 04 G X1 = X + 0 0,
Or+1 = O — 0, 0g, 9e+1 = G + 0,00,
nezxt k Ye+1 = G194

Be = Ye+1/ Y

0% 1) = =G + B 0%,
next k

FIG. 1. Descent algorithms that do not require knowledge of the Hessian of Q. Equations (3)
and (4) are of the form Qx = b; g, 69k, X, and éx, are vectors, while oy, B, and v, are
scalars. Primes denote complex conjugate transpose. These algorithms may be further
streamlined in the case of equation (3) by incorporating the computations with the right
hand side b into that of Qx.
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Thorson 6 Restoration of Missing Data

Toeplitz and Near-Toeplitz sy stems

If F is taken to be a two-dimensional Fourier transform, the resulting systems (3) and
{4) are block Toeplitz matrices under certain conditions. The condition for (3) to be Toeplitz
is that the samples to be interpolated are either all contiguous or all evenly spaced. The

condition for (4) to be Toeplitz is the same, but with respect to the known data space xg.

There is another assumption that can practically always be made that will simplify the
work of solving (3) or (4): the projection operator $ is defined in units of whole traces; that
is, complete traces in time are to be interpolated rather than parts of traces. When given an
estimated W, the problem separates in temporal frequency w. Each frequency w may be
solved for independently. This is because the matrices F;WF, and F;W~'F5 decouple in o
when the projection operator S that carries x into x, is independent of time ¢. This remains
true for any arbitrary F that separates in { and z. Therefore, depending on F a two-
dimensional problem (2) may degenerate into a number of one-dimensional problems, each of

which is Toeplitz.

When the interpolated traces are not evenly spaced or contiguous, the systems are not
Toeplitz. Two possible geometries of missing traces to known traces are indicated in figures
2 and 3. Though they are not Toeplitz, the almost-Toeplitz nature may be taken advantage
of in an iterative scheme based on splitting the matrices into a Toeplitz and a non-Toeplitz
part. Convergence depends on the spectral radius of Q, 'Q; of figures 2 and 3, and is
guaranteed if the spectral radius is less than 1 (Strang, p. 283). See the figures for a
description of the splitting. In each of the cases, the matrix is split so that "most” of it
resides in the Toeplitz part Q,, where hopefully |Q;] « |Q;]. Assume that the eigen-
values of Q; and the original matrix Q are all positive real (i.e. all the weights in W are posi-
tive). Then the eigenvalues of Q; ! are positive and real. Now a sufficient condition that
1Q,71Q;] <1is that |JQ, '||.]Qz]]l <1, or k(@;)]Qz] < |Q,]. Therefore ] Q;] has to
be greater than |Q;} by at least the factor x(Q;), where «(Q;) = |Q;1]. Q] is the
condition number of Q,;. «(Q,;) is about the ratio of the largest value of the weight W to its
smallest. Convergence of the methods of figures 2 and 3 thus depend on the dynamic range
of W.

A similar statement concerning convergence may be made for the case of the steepest
descent algorithm in figure 1. Luenberger {p. 163) shows that the convergence rate of
steepest descent depends on the condition number (Q) of Q = F;WF, (or F;W™1F3 in the
case of equation 4). The higher «(Q) is, (i.e. the greater the dynamic range of W) the smaller
the convergence rate of the steepest descent method. There is therefore a tradeoff
between accuracy of the interpolation and the rate of convergence of the algorithms. As we

shall see in the examples of the following sections, a good interpolation requires a large ratio
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Thorsaon 8 Restoraglion of Missing Dala

between the largest and smallest values of W, as well as an even distribution of values of
W such that there are substantial regions of high weight contrasting with regions of low

weight in model space.

Imperfect Transformations

So far the transformation to model space F has been considered to be a Fourier
transform, and thus unitary. If the transformation is not unitary, or even has zero eigenvalues
in it, and if the pseudo-inverse of F is being used as an approximation to F’ in the application
of the operator Q, the result may be quite unlike that of using the transpose F’. If FWF
happens to have a null space (some zero eigenvalues in F) then any component of x4 lying in
the null space has no contribution to the weighted least squares functional, and may have a

tendency due to roundoff to grow and dominate the estimate of x,.

Take F, for example, to be a constant-velocity migration. It has a propagating region
with eigenvalues of magnitude 1, and an evanescent region with eigenvalues tapering off to
zero. Any evanescent energy that creeps into the update of the extrapolated traces x, will
remain and contaminate the estimate, because the evanescent component is unconstrained

in the minimization.

One solution is to modify the transform F so that it is unitary for a particular subspace,
the propagating region, and nuli for the rest of the domain space. To assure the absence of
evanescent energy in X4, it may be filtered out every few iterations. With x, thus res-

tricted to lie in a subspace where F is unitary, the algorithms may be used as they are.

Estimating the Weights W

Getting a reasonable estimate on a weight function W is quite crucial to how good the
data extension looks. In case the transformation F is designated to be a Fourier transform,
estimating a weight (which is diagonal and non-negative) is equivalent to estimating a
desired power spectrum from the original data. In this instance we find ourselves involved
with the general problem of spectral estimation. For the examples that follow, F is taken to
be a two-dimensional DFT, and the desired spectrum is estimated in the following manner.
First, the original data, padded with the traces to be extrapolated, is transformed to (k_,w).
The modulus of the transform is first summed over constant dips passing through the origin in
(k.,w), and second, summed over constant frequencies w. Two functions are obtained: an
average frequency spectrum G;(w) and an average dip spectrum Gz(p) wherep = k;/ w. In

this way any aliased dips (that do not pass through the origin) are discriminated against.
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Thorson 9 Restoration of Missing Data

The desired spectrum G; is set to the product of G; and Gy:
Gylwk,) = G(w)Ge(k,/ w).

The weighting W is the inverse of G;, normalized and smoothed, and having a specified

dynamic range wppy/ Wyin Where wp., = 1 and w,;, is specified.

Experimentally it has been observed that setting W to an inverse power of Gy,
W(w,kz) = Gd —a(w,kz)

where a > 1, gives "better" extrapolations in the sense that the extrapolated traces are at
about the same energy as the data traces. Otherwise, as seen in the examples following,
the interpolated traces may uniformly have less energy than the original traces. Using a
power of o not only increases the dynamic range of W but also changes the quantile distri-

butions of the values of W. It is not currently clear how to pick an optimal value for a.

Exampie i: Three Beds

Missing data estimation will now be tried on a relatively simple synthetic model. Figure
4(a) depicts the model -- plane events at three distinct dips, interspersed with and padded
with zero traces on either side. The projection operator S is zero on the nonzero traces of
figure 4(a) and unity elsewhere. Figure 4(b) is a plot of the modulus of the model in (w,k,)
space. The spectrum is replicated at the nyquist k, because every other trace in the (z,t)
domain is identically zero. A steepest descent procedure was used in the solution of equa-
tion (3). One important modification to the procedure was made: the weighting function W is
re-estimated at each iteration. This changes (83) into essentially a non-linear procedure,
combining the steps of estimation and extrapolation in a bootstrap manner. With this modifi-
cation and for this particular synthetic model, convergence is practically attained in only a
few iterations. Figures 5 and 6 are the results of performing two steepest-descent itera-
tions on the ""three-beds' model of figure 4. Figure 5 depicts the initial estimated weight W
in (@) and the final estimated W in (b). The weights were estimated by averaging along lines
of constant dip and constant w in the (k,,w) domain. Note the final estimated weight shows
no tendency to pass any energy in the aliased region, nor the energy due to abrupt trunca-
tion of the model. Figure 6 shows the extrapolated data after two iterations, (a) displaying
the (z,t) domain and (b) displaying the modulus in the (k,,w) domain. For this model the
extrapolation has quickly converged to a desirable answer. There is little doubt that this is
due to the simplicity of the model: the the aliased energy is clearly separated from the

desired spectrum. The next example does not share this attribute.
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Thorson 13 Restaralion of Missing Data

Example 2: Vertical Seismic Profile

An extrapolation procedure identical to that described for the three-beds model was
next tried on real data. Figure 7 illustrates a portion of a vertical seismic profile, with depth
down the borehole on the horizontal axis and time on the vertical axis. The original data,
now padded with three zero traces for each data trace, is to be interpolated. Fvents at four
predominant dips are present on the profile: downgoing and upcoming primary events at a
shallow apparent dip, and downgoing and upcoming tube waves at a steeper apparent dip.
Figure 8 is a plot of the modulus of the Fourier transform of figure 7, and the four dips can
be seen: the downgoing primary and tube wave are in well-defined bands of dip, while
reflected primaries and a tube wave of opposite dip are much weaker though still discernible.
In figure 8 there is obviously drastic aliasing of the tube wave: aliased tube wave energy is
overlapping primary energy at frequencies near 70 Hertz. There are other obvious locations
in the (k.,w) plane where aliased and unaliased energy overlap each other. The objective of
the 3-to-1 interpolation is to suppress energy that does not match our parsimony model:
energy that does not line up along lines through the (k. ,w) origin (the upper right and left
corners of figure 8). Figure 9 is the result after two descent steps, and it can be seen that
enhancement of the parsimonious model has taken place. Figure 10 is the interpolated profile

in the (x,#) domain, and some shortcomings of the procedure are obvious:

First, energy in the interpolated traces is uniformly lower than in the data traces. This is
due to the problem with limiting the weights W to a certain dynamic range, as described pre-
viously. In this case, the ratio of the largest to smallest value of W is 20 to 1. A trace-
equalized version of figure 10 is shown in figure 11, and the interpolation of the primaries

appears somewhat smoother.

Second, the procedure has the limitation of being global: the interpolations are per-
formed at only a few predominant dips. A short portion of the primary event in the upper right
corner of figure 8 has a slightly steeper dip than primaries of the rest of the profile, yet this
dip is completely missed in the interpolation. This problem could be easily fixed by making

the operation more local: interpolate smaller pieces of the profile separately.

The third observation is that aliased energy that happens to intersect a pass-band on
figure O has a tendency to stick there. This can be seen at various locations on figure 10,
where interpolation at dips corresponding to the tube wave are present in a region where
only primaries obviously should be, and vice-versa. Making the interpolation more local may
cure this problem to some degree, but it is fundamental. The desired answer is declared to
be parsimonious in the (k,,w) domain, and only a few select dips are going to be used to

interpolate the entire section.
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Example 3: Burg Extrapolation

As an example of a more local type of extrapolation, a completely different procedure
than what has up to now been described is now given. It has been first used here by Clay-
ton in extrapolating common-midpoint gathers to zero offset, and is described by Morley and
Muir (SEP, this report). The procedure is an elementary application of a prediction-error filter
to extrapolate laterally. Consider the three-beds model of figure 12(a). The model may be

extrapolated out into the padded traces by performing the following operations:

1) transform to (w,z) domain;

2) for each w, calculate a prediction-error filter in the x-direction, by the Burg algorithm;
3) apply the negative of the prediction-error filter to extrapolate in x.

The result of this operation on the model of figure 12(a) is shown in 12(b). Obviously the
method works perfectly for models such as that of 12(a), which have sharp line spectra.
This extrapolation technique is closely related to the original problem stated early in this
paper: the (k_,w) domain is still the parsimonious domain. The estimation stage is the calcu-
lation of the prediction filter, and the extrapolation stage is simply it’s application to the
data.

Another extrapolation example is shown in figures 12(c) and 12(d). Here, the data (c)
exhibits some hyperbolic moveout. The resulting extrapolation is shown in (d); there is a
tendency to extrapolate at the average dip seen by the prediction filter. This is not surpris-
ing, for data with curved events is nonstationary in the z direction. The iterative procedure
of the previous examples would perform similarly, for it assumes the same parsimonious
domain, the frequency domain. A section with hyperbolic moveout is no longer '‘parsimonious"
in this domain, so that if a better extrapolation is desired, some other space must be sought

where local-ness of information can be assumed.
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Solutions to Chess Problems, SEP-24, p. 250.

Kubbel Problem Gottlieb Problem
1 N-K3ch K-N6
1 N-B7ch K-Q5
If 1..K-R7, 2 Q-KB2ch K-R6 2 R-B4ch PxR
3 Q-N2ch K-R5 4 Q-N4 mate. 3 P-B3ch PxP
4 PxRch PxP
2 Q-N4ch K-B7 5 R-K4ch PxR
3 Q-B4ch K~K7 (or K8) 6 B-K5ch PxB
7 N/QB-N5ch RxN

If 3...K-N8, 4 Q-N3ch.
If 7...PxN, 8 Q-Q8ch B-Q4

4 Q-Bich K-Q7 and 9 QxB mate.

If 4..KxN, 5 Q-K1ch and 8 Q-Q8ch B-Q4

Black’s queen is lost. 9 QxBch PxQ
10 NxR mate!

5 Q-Qich K-B6

6 Q-B2ch K-N5

If 6..K-Qb, 7 N-B5ch again
wins the queen.

7 Q-N2ch N-N6
If 7..K-R4, 8 N-B4ch K-R3
9 Q-N6 mate.

8 Q-R3ch!! KxQ

If the Black king moves away,
the queen is lost.

9 N-B2 mate!




