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WAVE EQUATIONS FOR SNELL-WAVE MULTIPLES
[condensed from SEP-15, p. 191-202 and SEP-20, p. 57-72]

In the last two sections we began with a simple recursive relation to
dccount for multiple reflections in a perfectly layered earth. We worked up
to a relation for a layered earth where reflection coefficients could be

varied laterally. These relations were

t
u = 3 c¢c_d (0a)
t 221 z t-2z
X t X-z
up = 2 ¢, d, 7 (0b)
z=1

It was asserted that (0b) could be used for dips up to 5 degrees, but dip was
never considered explicitly. Now we will develop a wave-equation method good
for muitiples traveling at angles of 25 degrees or more. It specializes at
small dip to the simple intuitive relation (0b). Additionally we will make a

significant extension of (0b) to 1incorporate depth variation in velocity.

Traveltime Depth

In geophysical data processing it is advisable to avoid, if possible, use
of dinformation which 1s not well known. The sensitivity of each process to
erroneous inputs is learned by both experience and organized analysis. Far
example, the velocity inside the earth is rarely well known and the degree of
uncertainty affects different processes differently. Often the output of
seismic analysis is & seismic section which is a picture of the earth as seen
in some (x,z)-plane. To reduce sensitivity to velocity, the picture s
almost universally presented in (x,r)-space where r s a two-way traveltime

variable related to depth by

dz
v(z)

2
r = zfo (la)
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Wave equations may look a little strange in terms of the variable = instead
of the variable 2z but this transformation is particularly important in the
analysis of multiple reflections. It 1; difficult to suppress multiples and
we often fail. By plotting the results 1in terms of a time variable =
instead of a depth variable z we may be able to recognize residual multiple

reflections by their familiar timing relationships.

Normal-Incidence Retarded Coordinates

Normal-incidence retarded time t' is defined by

. ; dz
t' = 1t f——v(z) (1b)

The downgoing wave d can be expressed in the usual (z,t)-coordinates or in
retarded coordinates as d'(r,t'). The downgoing wave may have some arbitrary

waveform f{t - to) where t0 is the delay expressed by the integral in (1lb).
Taking the wave to be going straight down, we have

d{z.t) = f[t - J-V%gj] = d'{r,t") = f(t') const(r) (2)

This equation is the solution to the differential equation

~=—d' = 0 (3)

This restates our initial assumption that the downgoing wave is depth-

invariant. We also made this assumpiion when we developed equation (0a).

We have another retarded time t'' for upcoming waves obtained by chang-

ing the sign of the depth axis in the downgoing definition (1lb}):

t't o=t + S

V(Z) (4)

Subtracting (1b) from {4) and using (la) gives

dz

-t = 2 s

= r (5)
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Waves or reflection coefficients may be expressed mathematically in any coor-

dinates, so we may take our choice from

d(z,t) = d'(s,t') = d''(r,t'") (6a)
u{z,t) = u'(r,t') = u''(s,t'") (6b)
c(z) = c'(v) = c¢'Yr) (6c)
The differential equation
g; ut' = ¢cd = c''d" (7a)
has the solution
u''(e,t'')y = Sdr c''(r) d'(r,t"'") (7b)

Changing from d'' to d' with (6a) and using (5) to get all independent

vartabies into double prime space we get

u{r,t'") = Sdr c''(2) d'(2'', " - 1) (8)

Equation (8) has the same meaning as equation (0a). A superficial difference

is that the depth axis is discretized in equation (0a).

In summary, the differential equations which we seek in order to control
the wave fields will specialize at vertical incidence, in the absence of dif-

fraction, to the pair

ar 4 =0 (3)or(9a)
a 11 11 ] L3 ]
ar Y = ¢''(r) d'(r,t"'" - 7) (9b)

The equations used by Riley and Claerbout (1976) were just these, along with
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t

axx diffraction terms. Now we seek the equations of the slanted system which

will relate to {0b).

Slanted-Incidence Retarded Coordinates

We begin by defining a coordinate frame which turns out to be the natural
coordinate frame for use in computation of downgoing waves. This coordinate
frame 1s simplest conceptually when velocity v 1is constant. But in opera-
tion 1t 1s no more difficult with depth-variable velocity v(z). So we will
state it both ways:

t' = ot - x sind _ 2 88 LA t - px - J‘EEEJL dz {(10a)
v v v

x' = x - 2z tan # = x - S tan 8 dz (10b)

R = 2 5050y, (10¢)

The last equation defines two-way traveltime depth for a wave at angle 8.
Note that the time-to-depth conversion 1s not the downward speed v cos # of
the tip of a ray but the speed v/cos & of a wavefront as seen in a borehole.
The definition of x' by (10b) 1is such that if you force x' to be constant
then the resulting constraint dx = dz tan # will keep you on a ray. The
definition of t! by (l10a) is such that fixing both x' and t' implies

that dz = v dt cos #, which means you move downward at the speed of a ray.

Consider first an impulsive plane wave traveling downward into the earth
at an angle # from the ray to the vertical. A mathematical expression for
this wave can be given in Cartesian coordinates or in the natural coordinates

as

d = B[t - X sin 8 _ z &85 0] = d' = &(t') const(x') const(s) (11)

To verify the direction of this wave we may cbserve the location of the wave-
front by setting the argument of the delta function to zero. At t=0 the wave-

front 1s thus located at =z = -x tan #. Observing other t values 1t may be
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noted that the wave moves at speed v in the direction (dx,dz) = (sin @,cos #).
It is important to note the form of this downgoing wave at the earth’s surface

z=0, namely 8[t - (x/v) sin #]. This is the behavior of a Snell-wave source.

Next consider the downgoing wave that will be seen in a stratified wedium
[c =c{z), v = const(z)], including the multiple reflections. In such a one-
dimensionally variable medium we need a I-D function, say f(arg), to
describe the seismograms. We may assert that within our usual approximations

on downgoing waves an appropriate mathematical expression is

d = f[t - X 51: LA z cos 0] = d' = f{(t') const(x') const(s) {12)

Observe that at the surface z=0 the downgoing wave (which 1s related to the
observed wave u by u = s-d) reduces to the form f[t - (x/v) sin #]. Deep echos
may be sensed in either of two ways: (1) stay at constant x and look at
large positive t: or (2) take a snapshot (constant t) of the earth’'s sur-
face and look at large negative x. In (12) we see that the advantage of the
natural coordinates is that a physical function of the three variables (x,z,t)

is expressed as a function of the single natural variable t'.

Next consider a situation where there is variation along the x-axis of
either the surface source or the reflection coefficients ¢ = c(x,z). Now the

downgoing wave is obviously at least a 2-D function, say

d = d' = f{t',x') const(r) (13)

Why is it that we can assert that the depth-dependence ¢ in (13) is that of
a constant function? The reason goes back to the definitions (13a,b,c).
Clearly, expression (13) i1s a constant if x' and t' are constants. The con-
stancy of x' forces us to stay on a ray. The constancy of t' forces us to
move downward at the speed of a ray. So the wave d should not appear to
change if we are moving with it, meaning that (13) should be a constant func-
tion of +. Now we may write a partial-differential equation for the downgo-

ing wave

= d' = 0 (14)
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where it is understood that the partial differentiation is done at constant x'
{(on a ray) and constant t'.

Obviously an appropriate change of sign for the 2z-dependent terms in

equation (10) gives us a natural set of coordinates for computing upcoming

waves. This change 1is

t'' = ot - px + J'EE%—!-dz {15a)

x'"' = x + Jf tan 8 dz {15b)
cos # )

r = 2 J‘——v—— dz (15¢)

In (15c) both z and s have had signs changed, so nothing changes.

Since up~- and downgoing waves will get coupled at the reflectors we will
need to relate the +two different sets of natural coordinates. Subtracting
(15) from (10) we get

tl _tll - 2}———.—C0‘S’odz = r (16&)

x' - x'! 2 [ tan # dz

2 J tan @ gE-df
dr

2

T A
2p J de = x(¢) (16b)

0

cos #

The latter equation defines Morley’'s shift function, a lateral shift x(7)

betwaen x! and x't which will occur explicitly in the processing equa-

tions.
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Coupling of Up- and Downgoing Wave Fields

We seek an equation like (0b), (8), or (9b) to sum up the contribution to
the wupcoming wave field from 1ts source, namely the products of the
reflection-coefficient field with the downgoing wave field. If for the moment
we focus our attention on layered media, then a rigorously correct equation
may be derived from Claerbout’s (1976) equation 10-5-1 along with the weak-
reflector assumption |U| << |D|. It 1s

9_ u = &85 $9_ u + L
0z B v ot 2

d (17)

<|-<
N

where cos ¢ is the cosine of the propagation angle. This angle may be found
by sguare-root expansions of partial-differential operators as in Claerbout
(18768) or 1t may be found 1in the 2-D Fourier-transform space of temporal fre-
quency and horizontal spatial frequency. The right-hand term of equation (17)
contains the product of the downgoing wave d and a reflection-coefficient-
like object YZ/Y. Study of this matter will show that Y also involves the
cosine of the angle. Because of our practical intent and the experimentalist
philosophy of adding new compiications only one at a time, we will choose to
igrniore the angle-dependence of reflection coefficients. Equation (17) of
course also assumes horizontal bedding, thereby introducing errors of the same
order. In light of all these considerations the coupling equation will be
taken to be

[-g—z——s-q%—ig-du = ¢d {18)

Those experienced in wave-equation methods will note directly that AdF o = ¢
the Teft side of (18) reduces to 8U'/3r. This may be called the 5-degree dip
equation. Higher square-root expansions give the so-called 15-degree and 45-

degree equations. Keeping only the 5-degree equation we have

= u'' = ¢cd = ¢''d'' = clig! (19)

As usual we want to compute u in its natural representation u''{x'",e,t')

and d in its natural representation d'(x'.s.t').
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—— y = cll(xll'r) dl(xi.’.'tl)

Using (16) to get all independent variables in terms of the double prime frame
we get
9

3 Ut = c'"Yx'',e) d'[x""-x(e), 7, t'"-r] (20)

This equation and equation (0b) are saying much the same thing. A superficial
difference 1s that (20) 1s a differential equation with respect to traveltime
depth s whereas (0b) 1s summed (11ke integration) over depth z. A more
basic difference is that the lateral shift term x(¢) may be a function of
the depth-variable velocity, but the corresponding z superscript on d in
the above equation can have validity only for a particular mesh ratioc in a
constant-velocity medium. Glancing back at equation (16b), which defined x,
we see that it goes as the time average velocity squared. So in practice the

improvement should be substantial.

We have reached sufficient height that we get our first overall view of
the territory. The intuitive modeling and processing equation (0b) section is
effectively a special case of a wave-extrapolation equation (17). From here
there are many directions in which we could move to process data with more or
less accuracy, the price for accuracy being complexity. There are many direc-
tions to go in getting different kinds of accuracy, and the way you go will
depend in large measure on your dataset. The most obvious direction 1s to
incorporate the wusual diffraction terms which extend the range of angular

validity.

Statement of Diffraction Equations

Observing all the conventions of equation {(19) but for simplicity omit-
ting all the primes, we get (I hope)

D = S -uU at ¢ = 0 (21a)
2
8 5 - v gt (21b)
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2
g— U = -—;!———-Bt U+ c{x.?) Dlx-x(¢),r,t-7] (21lc)
4 4 XX
4 cos @

These equations may be implemented in much the same way as in Riley and Claer-
bout (1976) or Claerbout (1976). What is new is the lateral shifting terms.

Synthetic Multiples on a Bright-Spot Model

Figure 1 shows a bright-spot model and various synthetic seismic sections
computed by Raul Estevez. The model 1s shown 1in frame a. Slanting is present

in frames ¢ and e, whereas diffraction 1s present in frames d and e.
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Bright-spot model and synthetic seismic sections.
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