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TIME-SERIES AND ONE-DIMENSIONAL MULTIPLE REFLECTION
[condensed from SEP-12, SEP-20, p. 57-62, and
Estevez-Claerbout (EC) Geophysics paper]

Any wave-field theory for multiple reflections must reduce, 1n Tlayered
media, to a time-series theory. Since a time-serfes theory is considerably
easier to understand, it seems worthwhile to first describe the final time-
series theory 1n order that certain simplifying assumptions and Timitations

will be clear fraoam the outset.

In a strictly mathematical sense the inverse wave theory of Goupillaud
and Kunetz completely solves the one-dimensional problem of suppressing multi-
ple reflections and recovering reflection coefficients. However, their theory
is an wunsatisfactory starting point for a two- or three-dimensional inverse
problem. To begin with, their method can hardly be said to “"work" 1in any
practical sense even 1in one dimension. I trace the main weakness to the
assumption of the knowledge of a broad-band source. Also, their theory is
somewhat complicated, stemming largely from incorporation of phenomena which
are rarely observable, such as transmission coefficients and inner bed multi-
ples. I advocate simplifying their theory by neglecting these phenomena, in
order that more significant phenomena such as source waveform, receiver
offset, and lateral variations may be incorporated. As the commercial success
of predictive methods of multiple suppression become more freguent, we will be

able to turn our attention back to those more rarely observable phenomena.

The basic 1dea of our approach will be similar to the one taken by Riley
and Claerbout (1376). First, the seismic wave field is decomposed into down-
going and upcoming waves by obtaining separate equations for each type of
wave. These equations are coupled at the reflectors through the reflection
coefficients. With these coupled equations, accompanied by the appropriate
boundary conditians, we can compute a reflection seismagram given a distribu-
tion of reflection coefficients (forward problem); or alternatively, given the
reflection seismogram., we can determine the reflection-coefficient distribu-

tion (inverse problem).
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Consider vertically incident plane waves and define

dt = wave downgoing from the surface at time t {la)
ug = wave upcoming to the surface at time t (1b)
st = downgoing source excitation function (lc)

The free-surface condition 1s that the total downgoing wave 1s +the 1nitial
excitation s, plus the reflected, polarity-reversed wave that is upcoming at
the surface

d, = s, - u (2)

Some Things to Neglect

A considerable amount of mathematical simplification results when we make
the practical assumption that the only multiples of interest are those with
cng or more reflections from the free surface. Throughout this whole study we
will make this assumption with the full knowledge that is it not always valid.
The reason why 1t 1s so often reasonable 1s that reflection coefficients 1n
the earth tend to be much less than those of the free-surface, unit reflection
coefficient. This assumption may be mathematically expressed 1in various,
nearly equivalent ways. For example, it is practically the same thing to say
that the downgoing wave 1s much larger 1in magnitude than the upcoming wave,
not &t each moment 1n time, but in the sense of power as & function of fre-
quency. Specifically, we may define Z-transforms
2 3

d0 + dlz + dZZ + d32 + - (3a)

D(2)

u{z) ulz +u Z2 +u, 2"+ - {3b)

2 3

and state our assumption as
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DB—] 0(Z) > u[%—] u(z) (4)

for a1l real @ where Z = e1w.

The reason why it is so advantageous mathematically to make this &ssump-
tion is that once the downgoing wave (including all multiple reflections) is
known at the surface z=0, the assumption that 1t grossly exceeds the upcominyg
wave means that reflectors at various depths do not significantly change the
downgoing wave from its surface value. Any changes to it would be quadrati-
cally small, being the product of the reflection coefficients and the upcoming
wave. 3o except for time shift, the downgoing waveform 1s presumed depth-

invariant.

Another assumption which reduces much of the clutter for about the same
loss 1n accuracy 1s to assume that any transmission coefficient (=l+c where
¢ is a reflection coefficient) may be replaced by unity. This is a quadratic
error since the transmission downward (=1l+c) times the transmission upward
(=1-c) equals 1-c2. Instead of further attempts at justification of the

approximations let us examine the consequences of the theory that they allow.

The “"Noah" Relations

Examination aof figure 1 suggests the equation

u = ¢, d, + ¢c,d, + ¢c_d {5)
For an arbitrary time t this becomes

t
u, = 32 ¢ d (6)

Eiiminate the upcoming wave u, with the free-surface condition {2)

t
s, -d, = 3% ¢ d (7)
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and introduce the simplifying definition c = 1, obtaining the equation of a

convolution

t
s = 2 ¢ d (8)

The appearance of a convolution suggests the definition of more Z-transforms

in the fashion of (3a,b), say

Y, W
VAV

FIG. 1. Ray-path geometry for upcoming wave u, at the surface at time t=3 in
terms of waves d, downgoing from the surface at earlier times and reflection

coefficients s at ‘uniformly spaced traveltime depths.

${2)

s+ slz + 522 + e (3c)

1+ C(2) 1+ c.2+c.2% 4 -+ (3d)

Defining (9), equation (8) may be obtained from identification of the coeffi-
t
cient of Z

$(z) = [1 + ¢(2)] D(Z) - (9)
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The computation of synthetic seismograms (forward modeling) may be done by

solving (9) for D and invoking polynomial division

$(2)

D{Z)}) I_TE—(-Z_Y {10)

Inversion

Inversion, 1.e. computing the reflection coefficients from the waves U
and D at the surface, involves substituting the surface cendition S(Z) = D{Z)
+ U(Z) into (9) to get the source-independent eguation

C(z) = g%‘%’ {(11a)

Since U and D are not separately observed it is also convenient to solve For C

in terms of $ and U, namely

_os(z) 5(2) - .
L+ WD) = 5y - s(Z) - WzZ) 1 - WzZ)/5(2) (1)

The form of (11b) correctly suggests that stable recursive behavior may be

expected when S5 is minimum phase.

Source Waveform Estimation

The practical problem is to estimate S{(Z) in such a way that (11} does
not diverge. This is a well-known problem which has a well-known, not com- .
pletely satisfactory answer. In summary, (10) may be written

S(1-C¢C2 .- (12a)

=
n

5-3C+ 3¢ - - {12b)

Often the seafloor reflection is sufficiently strong and clear for the term

SC to be identifiablie on the data as a primary reflection, say P, and SC2 to
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be 1dentifiable as a muitiple reflection, say M. Then we have

p -
s = M—- = e (13)

where (13) could be solved by least squares

2

Ms = p2 or p2sl =

M. (14)

Exponential T11t

A nice feature of all the Z-transform equations 1in this approximate
theory is that they are invariant under exponential scaling of time functions
- that 1s, all functions may be multiplied by exp(at). The result fs
equivalent to replacing Z = exp(iwAt) by Z = exp[(a + 1w)At].



