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SNELL WAVES AND MULTIPLE REFLECTIONS
[condensed from SEP-15, p. 57-71]

A low-flying hypersonic aircraft sends a Snell wave into the earth. The
Snell wave s slightly more complicated than a vertically incident wave, but
it 1s much simpler than a spherical wave. Moveout correction does not do a
sufficiently good job of correcting spherical waves to plane waves to enable
satisfactory prediction and suppression of multiple reflections. But Snell-

wave concepts provide a necessary link between theory and data.

Snell’'s Law and Observability of Snell’'s Parameter

Snell’s parameter p is the sine of the angle & between a ray and the nor-
mal to an interface divided by the medium velocity v. Snell’s law says this
parameter 1is conserved on transmission or reflection of rays. Snell’s law 1is
so basic that 1t applies 1in elasticity when a compressional wave 1s converted
to a shear wave. As seismologists we have a special interest in stratified
media, that is, media in which the velocity v(z) is a function of depth only.

Consequently, Snell’'s parameter

sin 8{(z)
TN )

is & constant function of depth. For a ray traveling from & source to a
receiver the Snell parameter p is & constant function of time, even if some

legs of the journey are by shear waves.

Being constrained to make our measurements at the surface of the earth,
we cannot make any direct observation of either the material velocity v(z) or
the propagation angle #, but the ratio (1) will be easily observed. Figure 1
shows that Snell’'s parameter p is the inverse of the speed at which the inter-
cept of a wavefront with the earth’s surface moves in the horizontal direc-

tion. That 1is,
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FIG. 1. Plane wave arrival at earth’s surface showing that observation of
dt/dx gives Snell’s parameter p = (sin &)/v.

The inverse to Snell’s parameter p is known as the horizontal phase velocity.
For a vertically 1incident plane wave this velocity 1s infinity. Less steep
angles have slower velocities. When the velocity 1is zero, as under a parked
airplane, the deformation of the earth dies out exponentially from the source.
Intermediate velocities are such that, as long as the phase velocity exceeds
the wmaterial velocity, we are discussing waves. When the phase velocity is
less than the material velocity, the disturbances damp out exponentially away
from the source, and the physical behavior becomes guasi-static deformation.
A special case, surface waves or ground roll, is for phase velocities faster
than that of the surface material and slower than that of the material at
depth.

A Source for Snell Waves

Actually airplanes hardly move at speeds sufficiently high te be good
sources of Snell waves. Mathematically, what we need 1s a continuously active
point source which moves horizontally from x = -w to x = +® at a speed of
1/p [actually, for two-dimensional (x.z) analysis. we would need a line source
along the third dimension y]. In a constant velocity medium the waves emitted
from this source are plane waves with an angle from the vertical given by
sin @ = pv. In a stratified medium v(z) the wavefronts become curved and

are no longer planar. Such wavefronts are so central to applied seismogram
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analysis in petroleum prospecting that they require a name. 'To prevent us
from inaccurately referring to these wavefronts as non-vertically-incident

plane waves, [ propose to call them Snell waves.

Take a surface Snell wave source to have a horizontal phase velocity pal

That the wave disturbance seen at any depth z, also moves horizontally at the

g
same speed follows from the time-shifted identity of any x with any other x.
Thus, Snell’s law (2) 1s merely a geometrical consequence of the fact that the
horizontal phase velocity at any one depth must, for stratified media v(z),

equal that at all other depths.

Spatial One-Dimensionality of 5nell Waves

The nice thing about a source of vertically incident plane waves (p=0) in
a horizontally stratified medium is that the ensuing wave field will be spa-
tially one-dimensional. In other words, an observation or a theory for a wave
field would be of the form P(z,t)-const(x). What 1s true, but not quite so
obvious, 1s that Snell waves for any particular non-zera p value are also spa-

tially one-dimensional. That is, with

t' =t - px (3a)
x! = x (3b)
2! = 2z {3c)

spatial one-dimensionality is given by the statement

P (x,z,t) = P'(z',t') - const(x') (4)

Obviously when an apparently two-dimensional problem can be reduced ta one
dimension great conceptual advantages result, to say nothing of computational
economic advantage. Before proceeding, study equation (4) until you realize
why the wave field can vary with x but be a constant function of x' when

(3b) says x = x'.
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Equations (3a,b,c) are a coordinate transformation from (x,z,1) space to
(x',2',t')-space. Equation (3a) is simply a definition of linear moveout. In
later papers we will consider more cohb11cated coordinate transformations.
(The spatial coordinates could follow the path of a ray and move at the speed
of a front.) In these more advanced papers the readers are asked to delve into
such arcane matters as how to manipulate Fourier transforms in the (x',z',t")
Snell coordinates and how to express the wave equation and solve it by finite
differences 1in (x',2',t') coordinates. In order to motivate study of these
complicated matters, this paper will study the useful geometrical aspects of

linear moveout.

Decomposition of Spherical Waves 1nto Snell Waves

We are all familiar with the idea of creating an impulse function by a
superposition of sinusoids of all frequencies. The three-dimensional general-
ization of this 1s the creation of a point source by means of superposition of
plane waves going 1n all directions. As seismologists we have special affec-
tion for mathematical models in which the velocity is solely a Ffunction of
depth v{(z). So instead of thinking of plane waves of some angle parameter @
we think of these waves as characterized by their Snell parameter p. Instead
of an angular bandwidth A#, we have a slowness bandwidth Ap. The advantage of

p over # is that it doesn’t change with depth z.

Not only can a point disturbance be thought of as a superposition of
plane-wave disturbances but a plane wave can be thought of as a superposition
of many Huygens secondary point sources. In fact, as will be described later,
a 3nell wave can be simulated by an appropriate superposition, called slant
stack, of conventional exploration data. Actually, just the simple process of
pPropagation spreads out a point disturbance to where, from a distance, the

waves appear to be nearly plane waves or Snell waves.

Linear Moveout

Another name for the Snell parameter is the stepout of an event. It has
units of inverse velocity and is often given in units of milliseconds per

meter (seconds per kilometer). Simple measurements made on field data contain
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information about Snell waves. Looking on field data for events of some par-
ticular stepout p amounts to scanning hyperbolic events trying to pick the
places where they are tangent to a straight line of slope p. The search and
the analysis will be facilitated if the data is replotted with 7inear moveout.
That 1s, energy located at offset f and time t 1in the (f,t)-plane is moved
to offset f and time t' =t - pf 4n the (f,t')-plane. This 1s depicted 1in
figure 2. The linear moveout converts all events stepping out at a rate p in
(f.t)-space to "horizontal” events in (f,t')-space. The presence of horizon-
tal timing 1ines facilitates search, identification and measurement of the

locations of the events.

slope

P*af

FIG. 2. Linear moveout converts the task of ijdentifying tangencies to con-
structed parallel 1ines, to the task of locating tops of convex events.
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Multiple Rsflsctions at Vertical Incidence

All reflection seismologists are familiar with the timing and amplitude
relations of vertical-incidence multiple reflections in layered media. To
establish this along with some notation let us suppose that we have seafloor
two-way traveltime tl with reflection coefficient € Then the n-th multiple
reflection comes at time nt1 with reflection strength c?. Suppose we have
also a deeper primary reflection at traveltime depth t2 with reflection coef-
ficient C,e Then we expect seafloor peglegs at time tz + nt1 with reflection

strengths n (multiplied by some transmission coefficients). These fami-

c,ch
21
11ar normal-incidence relationships apply to spherical-divergence-corrected
field data at zero offset, but they do not apply at any other offset. But
most if not all of our field data is recorded at non-zero offset. Normal
moveout correction restores the timing relations of primaries to zero offset.
But 1t cannot simultaneously restore zero- offset timing relations to multi-

ples, for reasons we will consider later.

FIG. 3. Rays at constant offset (left) arrive with various angles, hence
various Snell parameters. Rays with constant Snell parameter (right) arrive
with varijous offsets. At constant p all paths have identical traveltimes.

Families of Rays at Constant p

In a layered earth the complete ray path is constructed by summing the
path in each layer. At vertical incidence p = 0 it is obvious that when a ray
is 1in layer 1 1ts travel time ti for that layer is independent of whatever
other Jlayers may also be traversed on other legs of the total journey. This
is also true for any other fixed p. But as shown in figure 3 it 1is not true

for a ray whose total offset 2 fi is fixed instead of p being fixed.
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Likewise, for fixed p, the horizontal distance fi which a ray travels while
in layer i is also independent of other legs of the journey. Furthermore
t1 + const f1 for any layer i is also {ndependent of other legs of the jour-
ney. With multiple reflections a given layer may be crossed many times in the
total path. Taking the water layer to be characterized by (tl,fl) then an
extra leg 1n the water layer will have an extra time tl added to its time of
arrival and an extra distance fl added to the total horizontal distance. The
same constants get added whether or not the extra leg is part of a simple
seafloor multiple or part of some pegleg sequence. Some paths are shown 1in

figure 4.

It 1s & great advantage 1in data processing to have the seafloor resonance
occur at a frequency which 1s independent of any other layers that may be
involved on the total path. So the next oquestion is how to identify and

separate various p values on typical field data.

Relating Rays to Field Data

To see how to relate field data to Snell waves, begin by searching on a
commen-midpoint gather for all those patches of energy (tangency zones) where
the hyperboloidal arrivals attain some particular numerical value of slope p =
dt/df. These patches of energy seen on our surface observations each te]l us
where and when some ray of Snell’s parameter p has hit the surface. Typical
geometries and synthetic data are shown in figures 4 and 5. The traveltimes
ti for all these arrivals satisfy the familiar reiationships which we associ-

ate with vertical 1incidence.

A zero-offset time t1| less than the time ti is found by projecting the
traveltime for some patch back along the straight Tine of slope p to zero

offset, We have t1' s t1 - pf1. The contributions to t' from each layer

are additive, as they are for t and f, so the times t' also behave like the
times of normal-incident multipie reflections. Three wminor differences
between this and the vertical-incidence case are: 1) the actual numerical

values for tl and t2 will change with p because of the different travel path

tength; 2) the reflection coefficients c, and €, will change with p because

1
of the different reflection angle; and 3) the non-vertical-incidence case

theoretically should 1involve shear waves but for various reasons shear waves
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FIG. 4. A two-layer model showing the events (t.,b2t , 1.+t Top 1s a ray
trace, On the left is the usual data gather.” On the r1gh% it is replotted
with 1inear moveout t' = t - pf. Plots were calculated with (v ,1/p) 1n
the proportien (1,2,3). Fixing attention on the patches where da%a is tangent
to lines of slope p, we see that arrival times are in the vertical-incidence
relationships. That 1is, the reverberation period is fixed, and it is the same
for simple multiples as 1t is for peglegs. This must be so because the ray
trace at the top of the figure applies precisely to those patches of the data
where dt/dx = p. Furthermore, since § = 82, the times (tl',2t1',t2'+t2')
also follow the familiar vert1ca1-1nc1éence pattern.
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are very rarely observed.

Given all the patches of constant p on & gather we can predict the
traveltime of multiples by the familtiar timing relationships. Unfortunately,
the Tateral location of any patch depends upon the velocity model v(z). This
was considered in another chapter. It might seem to imply that you need to do
velocity estimation at or before the time that you remove multiples, or that
some kind of alternating bootstrap of velocity estimation along with multiple
prediction and suppression 1s required. Luckily, the method of slant stacking
which is based upon the idea of Snell waves comes to the rescue and enables us

to remove multiple reflections before velocity estimation.

Slant Stacking

Slant stacking is summation over linear moveout. This paper s res-
tricted to earth models which do not vary laterally, so it does not make any
difference 1f we sum all shots into each geophone or if we sum all offsets
into each wmidpoint. The first case 1s called wave stack and the second 1s
called common-midpoint stack. For more complicated earth models there dis a
substantial difference. The common-midpoint stacks do not really simulate
Snell waves but they are sti111 wvery wuseful 1in problems of wmigration and
before-stack migration. The wave stacks simulate Snell waves and are useful
for work on multiple reflections and work with 1lateral velocity variation.
The procedure of slant stacking is first to do linear moveout with t'st-pf,
then to sum over the offset. In other words, you can slant stack in either of
two ways: 1) sum along slanted lines in (t,f)-space; or 2) do I11inear moveout
t' = t - pf and then sum over offset at constant t'. In either case, the
entire gather P(f,t) gets converted to a single trace which is a function of
t'. Let us think about what this trace actually 1s. We will assume that the
sum over observed offsets is an adequate representation of integration over
411 offsets. The (slanted) integral over offset will obviously receive its
major contribution from where the path of integration becomes fangent tuo the
hyperboloidal arrivals. On the other hand, 1f rays carry a wavelet with no
zero-frequency component, and if the arrival time curve crosses the integra-

tion curve at any fixed angle, then the contribution to the integral vanishes.
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Actually we do not have Tine sources out of the plane of the survey so
the wavefronts we would actually generate would be conical with the apex of
the cone at the moving source. The major difference between the two cases is
1ike a cylindrical-divergence amplitude correction. A minor difference
predicted by wave theory would be a short wavelet with a 1little <color and
phase shift.

The strength of an arrival depends on the length of the zone of tangency.
The Fresnel definition of the length of the zone of tangency is based aon a
haif-wavelength condition. 1In an earth of constant velocity (but wmany flat
layers) the width of the tangency zone would broaden with time as the hyperbo-
las flatten. This increase goes as t%. which accounts for half the
spherical-divergence correction. In other words, slant stacking takes us from
two dimensions to one, but a t% remains to correct the conical wavefront of

three dimensions to the plane wave of two.

Another view of slant stacking 1s as a sort of narrow-band-filtering
operation which accepts energy at some particular Snell p value and rejects
energy at other values. In the frequency domain it is closely related to what
is known as dip filtering. To recognize a guantitative relationship between
Snell’s parameter p = dt/df and the frequency domain, consider a wave field
represented by the sinusoidal plane wave exp(-iwt + 1kxx + 1kzz). Set the

phase equal to a constant and compute dt/dx at constant z. We get

k
di %

So in the (w,k)~plane the information about a slant stack 1s contained an the

Tine kx = po.

Why Predictive Methods Fail on CDP Stacks

Normal moveout correction would succeed in restoring zero-offset timing
relationships 1in & constant velocity earth, so we should ask the questions
whether, in typical land and marine survey situations, v{z) departs so much
from constant that residual time shifts greater than a half-wavelength are

routinely involved. No equations are needed to get the answer. It 1is
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generally observed that conventional common-midpoint stacking suppresses mul-
tiples because they have lower velocities than primaries. This observation
alone implies that normal moveout does 1ﬁdeed routinely time shift multiples a
half-wavelength or more out of the natural zero-offset relationships. As a
result, much of the residual multiple reflection energy left in the stack does
not fit the familiar vertical-incidence model. Consequently, predictive mul-
tiple suppression on a common depthpoint stack can be expected to be an
exasperating undertaking. You can get rid of the vertically dincident energy
but the remainder will require adaptive 1least-squares coefficients which
devour primaries as well as multiples. With marine data the moveout could be
done with water velocity, but the peglags still would not fit the normal-
incident timing relationship. And the peglegs are often the worst part of the

multiple-reflection prablem.

Processing Sequence

The slant-stack operation on field data is fraught with complications of
truncation and spatial aliasing. I’'m not sure 1f these problems can be over-
come satisfactorily in practice but 1n principle we begin by repeating the
slant-stacking process for many separate values of p so that the (f.t)-
space gets mapped into a (p,t)-space. The nice thing about {p.t)-space s
that the multiple-suppression problem decouples 1nto many separate one-
dimensional problems, one for each p-value. Not only that, but you do not
need to know the material velocity to solve these problems. The one-
dimensional inverse problem is a classic one in geophysics with solutions pub-
lished by many venerable geophysicists. After suppressing the multipies you
inverse slant stack. It turns out that this 1s ailmost the same as slant
stacking itself (see SEP-14, p. B81-86). Once back in {f,t)-space you estimate

velocity by your favorite method.

Later chapters solve the theoretical multiple suppression problem with

the simultaneous complications of non-zero offset and irregular non-planar

reflectors.
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FIG. 5. This figure is the same as figure 4 but more multiple reflections are
shown. This simulates much marine data. By picking the tops of all events on
the right-hand frame and then connecting the picks with dashed 1lines, the
reader will be able to verify that sea-bottom peg-legs have the same {interval
velocity as the simple bottom multiples. The interval velocity of the sedi-
ment may be measured from the primaries. The sediment velocity can also be
measured by connecting the n-th simple multiple with the n-th peg-leg mul-
tiple.



