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FREQUENCY DISPERSION AND WAVE-MIGRATION ACCURACY

Frequency dispersion is a result of different frequencies propagating at
different speeds. The physical phenomenon of frequency dispersion is rarely
heard 1in daily 11fe, although many readers may have heard it while 1ce skating
on lakes and rivers. Elastic waves caused by cracking ice propagate disper-
sively changing pops into percussive notes. Even while fregquency dispersion
is & barely perceptible phenomenon in reflection seismology, 1t 15 a substan-
tial nuisance in seismic data processing, where we often see artful displays
of the difference between differential operators and difference operators. As
such, it is an embarrassment to process builders. Dispersion is not an essen-
tial feature of data processed by finite differences: 1t can always be
suppressed by sampling more densely, and 1t 1s the jeb of the production

analyst to see that this is done. Figure 1 depicts some dispersed pulses.

But dispersion can be a useful warning to the seismologist that the data
itself 4is in danger of transgression over the boundary into aliased space.
Frequency-domain methods do not depend on difference operators so they have
the advantage that they do not show dispersion. Penalties for this advantage
are: (1) limitation to «constant wmaterial properties, (2) wraparound, (3)

occurrence of spatial aliasing without the warning of dispersion.

Spatial Aliasing

Allasing can accur on the axes of time, depth, geophone, shot, midpoint,
offset, or crossline. We will begin on the horizontal space axis where the
problem is worst. The dispersion relation of the wave equation enables us to
campute the vertical spatial frequency kz from the temporal frequency w,
the velocity v, and the hor1znnt?1 spatial frequency kx by the semicircle
relation kz(w.kx) = (uZ/v2 - ki)i. Sampling on the x-axis gives an upper
1imit to kx equal to the Nyquist frequency w/AX . Both freguency-domain
methods and finite-difference methods treat higher frequencies as if they were
folded at the Nyquist frequency. Thus the semicircle dispersion relation 1s
replicated above the Nyquist frequency as shown in figure 2. Angle considera-

tions cause an association between the temporal frequencies and spatial
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FIG. 1. (a) A pulse. (b) A pulse slightly dispersed as by the physical dissi-
pation of high frequenctes. {(c) A pulse with a substantial amount of fre-
quency dispersion, as could result from data processing.
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FIG. 2. The effective dispersion relation of the wave equation when the hor-
1zontal axis 1s sampled. Values are given for zero-offset migration where Ay
= 25 meters and velocity v = 2000 m/sec. The semicircular arcs correspond to
frequencies of 40, 20, and 10 Hz.
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frequencies. The temporal frequencies are divided into low frequencies, which
are always free from worries about spatial aliasing, and higher frequencies,
which are safe only at increasingly sm511 dips. To get some feeling for the
seriousness of the practical problem, consider zero-offset migration, which
implies two-way traveltime. Two-way time amounts to halving velocity ar fre-
quency so horizontally moving energy (as reflections from a vertical fault)
has w = vky/Z. Temporal frequencies which cannot be spatially aliased are
w S ve/(28y) or T 2 v/4(Ay) Hz. Take as typical a velocity of 2 km/sec and
midpoint samplings Ay of 25 meters (good), 50 meters (reconnaisance), and 100
meters (3-D crossline). Then the completely safe frequencies turn out to be
20, 10, and 5 Hz. The seriousness of this problem is often understated by a

factor of two when two-way time is not considered.

Another view is that steeply dipping waves are suppressed by the geophone
group. (This disregards shot-space aliasing.) In this view the limitation
should be thought of 1n terms of angles at which energy is missing from the
data. Taking the ray angle to be 30 degrees instead of 90 degrees doubles
horizontal wavelengths. This allows the doubled frequencies (40,20,10) Hz to
be safe from spatial aliasing. Some perspective on the significance of wide-
angle processing 1s gained by realizing that data commonly exhibit good sig-

nals above 40 Hz.

Second Space-Derivatives

The defining equation for a second-derivative operator is

8" P = P{x + Ax) - 2P(x) + P(x - Ax) (1)

2
x2 (AX)2

o

The second derivative operator is defined by taking the 1imit

2 2
—a-——P = LP (2)
8)(2 11im Ax=0 5,(2

Many differant equations can all go to the same limit as Ax goes to zero.

So the problem is to find an expression which is accurate when Ax is larger
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than zero. The practical problem 1s to find an accurate expression which 1s
not too complicated. Our first objective is to see how to evaluate quantita-
tively the accuracy of equation (1). Second, we will Took at an expression
that 1is slightly more complicated but much more accurate. This expression is
incorporated into nearly all production finite-difference programs in explora-

tion seismology.

The basic method of analysis 15 Fourier transformation. More simply, we

take derivatives of the complex exponential P = P0 exp(1kx) and look at

errors as & function of the spatial frequency k. For the second derivative

we have

a° 2

8 P = =P = -k'P (3)
X

XX 8
We define Kk by an analagous expression with the difference aperator:

P4
s p o= Y b . 4% (4)
XX 2

8§x

Ideally k would equal k. Inserting the complex exponential into (1) we get

an expression for k in terms of k

P
% . __g_ [e1k(x+Ax) _ pelkx e1k(x-Ax)] (58
Ax
2 2 |
b, = ko= ;—x-z-n - cos(kax)] (5b)

It is a straightforward matter to make plots of kAx versus kAx from (5).
The half-angle trig formula allows an analytic square root of 5 which fis
k Ax

kax = 2 sin 5 (5c¢)
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Series expansion shows that for low frequencies k is a good approximation to

k. At the Nygquist frequency., defined by kAx = », the approximation kax = 2

is a poor approximation to .

The 1/6 Trick

Increased absolute accuracy may always be purchased by reducing Ax.
Increased accuracy relative to the Nyguist Frequency may be purchased at a
cost of computer time and analytical clumsiness by adding higher order terms,

say

. ) sz 84
sz 8x2 12 8x4

+ etc. (6)

As Ax tends to zero (6) tends to the basic definition (1) and (2). Coeffi-
cients 11ke the 1/12 in (6) may be determined by the Taylor-series method 1f
great accuracy 1s desired at small k. Or a somewhat different coefficient
may be determined by curve-fitting techniques if accuracy is desired over some
range of k. In practice I believe (6) is hardly ever used because there is a
less obvious expression which offers much more accuracy at less cost! The

ifdea is indicated by

82
2 2
; 2 ® sz 2 (7a)
ox Ax™ 8
1 + — ——e
6 sz
The accuracy may be numerically evaluated by substituting from (5) to get
A s_inz k Ax
kaxyz _ 2 (7b)
2 1o Lg qnf X
6 2

The square root is plotted in figure 3.

If the 1/6 in (7) were replaced by 1/12 then {(7) and {6) would agree to

second order 1in Ax. Actually the 1/12 comes from series expansion but the
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FIG. 3. Accuracy of the second-derivative representation of (7) as a function
of spatial wavenpumber. The sign of the square root of (7b) was chosen to
agree with k 1in the range ~-» to = and to be periodic outside the range.
{Curve computed by Dave Hale.)

1/6 fits over a wider range and 1s a value in common use. F. Muir pointed out
that the value (l/w2 -~ 1/4) = 1/6.7 gives an exact fit at the Nyquist fre-
quency and a quite accurate fit over all lower frequencies! Indeed, in 1980
it may be said that few explorationists consider the accuracy deficiency of

(7) to be large enough to warrant interpolation of field-recorded values.

Rather than pursue this further to provide a therough analysis of errors,
let us be sure it 1is clear how (7) 1s put into use. The simplest prototype

equation 1s the heat-flow equation.

2 8
3] 0 -~
I I o (52
Ox Ax
1+ —2§
6 XX

2
AX a -
[l + 6 6xx]at 9 - axx q (8b)
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The apparently new aspect of this equation is the mixed axxt derivative.

But it is represented on the usual 6 point star as follows:

- t (9)
szAt 1 2 1

S0, other than modifying the six coefficients on the star 1t adds nothing to

the computational cost of solving the equation.

Time-Derivatives and the Bilinear Transform

You might be inclined to think that & second derivative 1s a second
derivative and that there 1is no mathematical reason to do time-derivatives
differently than space-derivatives. This 1is wrong. A hint of fundamental
disparity 1is found by considering boundary conditions. With time-derivatives
(and often with the depth 2z-derivative) we generally have a concept of
causality, which means that the future is determined solely from the present
and past. Appropriate boundary conditions on the time axis are initial condi-
tians - that 1s, specification of the function (and perhaps some derivatives)
at one point, the initial point in time. For depth =z that special point is
the earth surface at 2z=0. But lateral space-derivatives are different. They
require boundary conditions at two widely separated points, usually at the

left and right sides of the volume under consideration.

Causal differentiation is a deep subject. Its importance to stability in
wave analysis merits more lengthy consideration in a later chapter on advanced
wave extrapolation. But we have already seen the main idea, which is embedded
in the Crank-Nicolson differencing scheme. It remains to examine accuracy and
frequency dispersion.

Begin with a time function Py~ We define its Z-transform by

-2 -1

2
P(Z) = puzz + p_lz + p0 + plz + pzz + (10)
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Define an operator -{iwAt by

1
- {@At

[
+
t~

'
N[

(11)

[
]
~N

Let us apply this operator on P +to get the Z-transform @ of another time

function g

.
oy = FIELe (12a)
Multiply both sides by (1-2):
(1-2)0(2) = 5 (1+ 1)P(D) (12b)
Equate the coefficient of Zt on each side:
9 =~ 941 = Ei'iizi:l {l2c)

Taking pt to be an impulse function we see that qt turns out to be a step
function, that is,

=]
L}
.
o
[}
—
.
o
.
[=]
-
[

{13a)

g = ---0,0,%1,1,1,--- (13b)

So a, approximates the integrail of Py from minus infinity to time t. Tak-
ing Z = exp(iwAt) eguations (10), (11l), and (l2a,b) are expressions in the
Fourier transform domain and the operation of (ll) represents numerical
integration by the Crank-Nicolson method. The accuracy of the integration (or

differentiation) 1s evaluated by substituting 2Z = exp(iwAt) into (11), say

1wAt -iwAt/2  HwAt/2
ieat = 2liet__ o gt —=
1 .+ o wAt oo 1wAt/2  {wAt/2
gy Sin(wAt/2)

cos(wAt/2)
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%‘5— = tan [9-5‘5‘-} (14)
Equation (14) is the fundamental statement of the accuracy of approximation of
the first-derivative operator by the Crank-Nicolson method. Series expansion
shows that @ goes to o as At goes to zero. Relative errors 1in w at
(4, 10, and 20) puints per wavelength are (30%, 3%, and 1%). These errors are
quite large, calling for either a choice of small At or & more accurate
method than (14). The bad news 1s that there does not seem to exist a
representation of causal differentiation which 15 any more accurate than
Crank-Nicolson. In other words we have nothing like the 1/6 trick for time-
derivatives. So we must reduce the time sample interval At considerably

from the Nyquist criterion.

On the other hand most geophysical differential equations have time-
invariant coefficients so we can solve them in the w-domain rather than tn
the time domain. Or we might find we do not need to have causal time-
derivatives: antisymmetric derivatives might do. With the depth z-axis we
are largely stuck with causal derivatives, although we could use Fourier
methods over layers. But the depth axis 15 not so troublesome as the x- and
t-axes because 1t usually affects computer time only, not data storage. The
practical picture may not be as dreary as the one I am painting. Many people
are very pleased with both the speed and accuracy of time-domain migrations at
At = 4 mwmiiliseconds.

Accuracy - The Contractor's Uiew

A chain is said to be no stronger than its weakest link. Economy dic-
tates that the 1inks should all be made of equal strength. Likewise, 1n the
construction of a production program for wave-equation migration, weakness
arises from approximations made in many different places. Again, economy dic-
tates that funds to purchase accuracy should be distributed to where they will
do the most good. Geophysical contractors naturally become experts on
accuracy-cost trade-offs in the migration of stacked data. Certain broader
questions alsoc merit study, such as the error associated with velocity uncer-
tainty and the error associated with migration after stack rather than before.

Here we will just look at some of the mare obvious considerations.
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Migration 1s basically just a process of downward extrapolating surface
data. A1l the various approximations imply timing errors, which for a single
frequency are just phase errors. It 1sueasy to write equations for these
phase errors. The true phase t at a depth =z s given by the integral of
kz with depth. But we may as well replace the integral by the average
integrand times the depth:

¢ = zk (15a)

Discretizing the 2z-axis into N levels,

2 kz Az
byqep = N Az QZ = N Az o= tan|—= (15b)
Specializing for scalar waves,
1,2,
2
W 2
k, = [—2—- kx] (16)
v
or retarded scalar waves
1 2 2 2.4
kZ = v[w (w v kx) ] (17)

or from the Tecture on the DSR equation, the phase for the zero-offset migra-

tion is obtained by replacement, midpoint y for x, and v/2 for z:
%
2 vyi2 2
= & - A 18
kz vl o [2} ky (18)

We may simplify the algebra with no conceptual loss by making the 15-degree

approximation

k. = —X (19)
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Discretizing the x- and t-axes, kz becomes

S (20)

The worst errors will occur at the highest frequency w and the steepest dips
ky/m. You need to estimate those. Then you need to decide on an acceptable
phase error. This is often taken to be a half-wavelength or about 1%. Then
you <choose each of Az, At, Ax to keep (ftrue - rdiff)/rdiff Tess than
about 1%. If I say any more than this you will either go to sleep or you will

disagree with me, so ! stop here.



