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SPLITTING AND FULL SEPARATION

The splitting method is a useful technique for obtaining numerical solu-
tions to partial-differential equations. One motivation for this method 1is
that for the 3-D, 15-degree, wave-extrapslation equation, we have no other
stable approach with reasonable costs. Splitting is also the method of choice
with 2-D wave extrapolation in laterally variable media. On a deeper Tlevel,
splitting provides 1increased understanding of how to formulate inverse prob-

lems.

Splitting

The splitting method applied to numerical solutiaon of the heat-fiow equa-

tion
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is to replace it by two different equations, each of which is used on alter-

nating time steps:
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The occurrence of the numerical factor of 2 in (2a) and (2b) is something of a
mathematical convention because, as it stands, the egquations do not make it
clear that o vanishes over half the time steps, say, ¢ vanishes over even-
numbered time steps in (2a) and odd-numbered time steps in (2b). It can be
proved mathematically that the solution to {2a.b) converges to the solution to
(1) with errors of the order of At. Hence the error goes to zero as At goes

to zero. The motivation for the spiitting method was developed 1in earlier
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FIG. 1. Temperature distribution in the (x,z)-plane beginning from a delta
function (left). After heat is allowed to flow in the x-direction but not in
the y-direction we have the heat located in a sheet (center). Finally allow-
ing heat +to flow for the same amount of time in the y-direction but not the
x-direction we get the same symmetrical Gaussian result that would have
resulted had heat moved in x- and y-directions simultaneously {right).

mount up simply by counting multipliications. When the data base does not fit
entirely into the random access memory, as 15 almost the definitfon of a Jarge
problem, then each step of the splitting method demands that the data base be
transposed, say from {x,y) storage order to (y.,x) storage order. Transposing
requires no multipiications, but in many environments it would be by far the
most costly part of the whole computation. So 1f transposing cannot be
avoided, at least it should be reduced to a practical minimum. Thus we can
easily envision circumstances which dictate a middle road between splitting
and separation. This would happen if ¢ were a slowly variable function of X
or y. Then 1t might be found that although caxx does not strictly commute
with cayy. it comes close enough that a number of time steps may be made with
(2a) before transposing the data and switching over to (2b). Questions like
this but with more geophysical .interest arise with the wave-extrapolation

equation considered next.

Application to Lateral Velocity Variation

A circumstance where the degree of non-commutivity of two differential
operators has a simple physical meaning and an obviously significant geophysi-
cal application is the so-called monochromatic 15-degree wave-extrapolation

equation in inhomogeneous media. Taking v = v it is
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{retardation + thin lens + diffraction) U

Inspection of (3) shows that the retardation term commutes with the thin-lens
term and with the free-space diffraction term. But the thin-lens term and the
diffraction term do not commute with one another. In practice it seems best
to split, doing the thin-lens part analytically and the diffraction part by
the Crank-Nicolson method. Then stability 1s assured because the stability of
each separate problem is known. Also the accuracy of the analytic solution 1s
an attractive feature. Now the guestion is, to what degree do these two terms

commute?

The problem is just that of focusing a slide projector. Adiusting the
focus knob amounts to repositioning the thin-lens term in comparison to the
free-space diffraction term. There 15 a small range of knob posttions over
which no one can notice any difference, and a larger range over which the peo-
ple in the back row are not disturbed by misfocus. Much geophysical data pro-
cessing amounts to downward extrapolation of data. The lateral variation of
velocity occurring in the lens term 1s known only to a limited accuracy. In
fact we may be trying to determine v(x) by the extrapolation procedure. For
long lateral spatial wavelengths we may assume that the terms commute and that
the effect of the poorly known lateral variation in v «can be considered
without regard to the diffraction. At shorter wavelengths the diffraction and
lensing effects must be interspersed. So the real {issue 1s not merely compu-
tational speed but the interplay between data accuracy and the possible range

for velocity in the underlying model.

Application to 3-D Migration

The operator for migration of zero-offset reflection seismic data in
three dimensicns 1is expandable to second order by Taylor-series expansion to

the so-called 15-degree approximation

wz k - 1w vaxx Vayy
2 + axx * 8yy ~ v + -2iw + -2iw (4)
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Considering the most common case where v is slowly variable or independent
of «x and y, we see that the conditions of full separation do apply. This
is good news because it means that we ca; use ordinary 2-D section migration
programs for 3-D, migrating the din-l1ine data and the out-of-1ine data in
either order. The bad news comes when you try for more accuracy. Keeping
more terms in the Taylor-series expansion soon brings in the cross term axxyy.
Such a term allows neither full separation nor splitting, and we are left with
explicit methods. Things are even worse with the rational fraction expansion
where an attempt to get 45-degree accuracy leads to terms 1like {const
+ axx + ayy)az which cannot even be handled by the explicit method. For-
tunately, present-day marine data acquisition techniques are sufficiently
crude 1in the out-of-Tine direction that there is 1ittle justification for
out-of-1ine processing beyond the 15-degree equation. But there may be justif-
ication with 1land data. Fourier transformation of at least one of the two
space axes will solve the computational problem. This should be a good
approach when the medium velocity does not vary laterally so rapidly as to

invalidate application of Fourier transformation.

Non-Separability in Midpoint-Offset Space

Reflection seismic data gathering is done on the -earth's surface. One
can 1imagine the appearance of the data which would result if the data were
generated and recorded at depth, that is, with deeply buried shots and geo-
phones. Such buried data could be synthesized from surface data by first
downward extrapolating the geophones, then using the reciprocal principle to
interchange sources and receivers, and finally downward extrapolating the sur-
face shots (now the receivers). A second, equivalent approach would be to
march downward in steps, alternating between shots and geophones. This latter
approach is investigated with more thoroughness in later chapters, but we may

simply state the result as the equation
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The equivalence of the two approaches has mathematical expression in the fact
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that the shot coordinate s and geophone coordinate ¢ are independent vari-
ables, so the two square-root operators commute. The same solution 1is obtained

by splitting as by full separation.

In a later chapter equation (5) 1s derived and then converted to the

space of midpoint y and half-offset h, where it takes the form
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It is not our purpose here to abstract the results of much future material but
merely to note that the operator 1in (6) 1s not the sum of a midpoint operator
and an offset operator. So migration and stacking are not interchangeable.
It turns out that the accuracy of “conventional processing” can be analyzed by
analyzing the y-h cross terms in (6). And “"conventional processing” <an be
improved by organizing things to minimize the effect of the non-commutivity of

the two operators.

Proof of the Validity of the Splitting and Full-Separation Concepts

Partial differential operators may be approximated by difference opera-
tors, which 1in turn may be represented by matrices. Then the property of com-
mutivity (AB = BA), or its lack (AB » BA), gets carried from the differential
operators to the matrices. Commutivity is very nice because it means that the
operation of one stage of the solution process, say multiplication by
(I + AzA), <can be interchanged with the succeeding stage of the process, say
(I + AzB). Thus regrouping may be done for computatienal convenience or for
any conceptual advantage such as when formulating an inverse problem. Use of
the Crank-Nicolson finite-differencing method changes only the fact that the
matrix operator of any stage has the slightly different formal expression
(1 - Azaz2) 11 + azaz2).

Te 1llustrate this further take A to be the operator vaz/axz and B to

be the operator vazlayz. Reference to the 4-by-4, (x,y)-space of l6-point

difference operators in the previous section shows that these operators have
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non-zero elements indicated by v where
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Study (7a) to discover that 1t 1s tridiagonal with the additional property
that some special elements on the superdiagonal and some on the subdiagonal

are identically zero. Also, (7a) can be partitioned into 4-by-4 submatrices,



297

and the existence of the special zeros enables us to say that only the diago-
nal blocks are non-vanishing. So in a block-matrix sense, (7a) is a diagonal
matrix. The converse happens with (7b): its submatrices are diagonal but 1ts
blocks take a tridiagonal pattern. It 1s now apparent that iF v is can-
stant, the matrices representing axx and ayy commute, as they should. Like-
wise, it 1is also apparent that incorporating a variable velocity v{x.y) causes
the matrices to be non-commutative just as the differential operators are

non-commutative.

The validity of the splitting method 1s not based on the discretizatian
of the x- and y-axes as we have done 1in the previous paragraph. It depends
on the discretization of the 2z-axis and the fact that to first order in Az

we have

(1 + a2vd_ ) (1 + szayy) = 1+ Azv(d  + ayy) (8)

The error for a single step given by (8) is order Azz. The number of steps
Nz reqguired to get from 2, to z, is just Nz = (z2 - zl)/Az. Therefore, the
accumulated error 1is proportional to Az. Hence 1t vanishes in the Timit, jus-
tifying the splitting method. The matrices (7a,b) do, however, i1llustrate
that the complete guestion of commutivity involves boundary conditions as well

as differential aoperators.

Brown's Article

More details may be found in SEP-185, p. 214-232, in an article entitled
"Splitting and Separation of Differential Equations with Applications to
Three-Dimensional Migration and Lateral Velocity Variation" by ODavid Brown.
Brown's paper contains Muir’s representation of the 3-D migration operator,
which is exact in the in-line and out-of-line direction but has only guadratic
accuracy 1in between. His paper also discusses a pitfall, that a stable equa-
tion can be split into two unstable parts, and 1llustrates 1t by the 45-degree
extrapolation equation 1n Tlaterally variable media. (I nearly pushed Bert
Jacobs into the pit!) I consider Brown's paper to be a landmark in geophysi-
cal data processing. Before Brown did his work, I had difficulty defining the
nature of the problem with midpoint-offset coordinates. It 1s easy to say 1in
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retrospect that we all knew about the commutivity of differential operators
and their exponentials, but the fact remains that solving the heat-flow equa-
tion by full separation was not mentioned in either Richtmyer's book on finite

differences or Morse and Feshbach's book on Mathematical FPhysics. They too
did 1t the hard wayl



