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DIFFICULTY OF HIGHER DIMENSIONS

The chapter after this introduces the so-called “"splitting" method of
selving partial-differential equations. Despite the fact that 1t is a per-
fectly legitimate wethod, many students find it aesthetically objectionable.
But it turns out to be a very useful method for dealing with lateral velocity
variation. Furthermore, it turns out to be an economic necessity with so-
called "3-D" seismic migrations. In this section we see why multi-dimensional
problems are tougher in kind as well as 1in scale. If you find that you are
not interested 1in 3-D and don’t object to dirty tricks, then you could skip

this section and leap forward to the offending method in the next chapter.

S0 far we have had no trouble obtaining cheap, safe, and accurate differ-
ence methods for solving partial-differential equations (PDE’'s). The implicit
method has met all needs. But in space dimensions higher than one the impli-
cit wmethod becomes prohibitively costly. For the common example of problems

in which axx becomes generalized to ax + ayy we will learn the reason why.

X
The simplest case is the heat-flow eguation for which the Crank-Nicolson

method gave us

oAt oAt
1 - ——38 T = |1 + —-38 T (1)
[ 2CAx2 xx] t+1 [ 2CAx2 xx] t

The nested expression on the left represents a tridiagonal matrix. The criti-
cal stage is when we solve the tridiagonal simultaneous equations for the vec-
tor of unknowns Tt+1' Luckily there is a special algorithm for this solution,
and the cost 1increases only linearly with the size of the matrix. Now turn
from the one-dimensional physical space of x to two-dimensional (x,y)-space.
Letting b denote the numerical constant in (1) we find we are supposed to step

forward in time with

[1 - b [axx + ayy)] T, - [1 + b[Exx + Byy]]Tt (2)

The unknowns Tt+1 are a two-dimensional function of x and y which can be

denoted by a matrix. Next we must interpret the bracketed expression on the
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left side. It turns out to be a four-dimensional matrixl

To clarify the meaning of this we iltlustrate a wapping from two dimen-
sions +to oane. Take the temperature T to be defined on a 4-by-4 mesh. A

natural way of numbering the points on the mesh is

11 12 13 14
21 22 23 24
31 32 33 34 (3)
41 42 43 44
For algebratc purposes these 16 numbers may be mapped into a vector. There

dre many ways to do this. A simple way would be to associate the locations in

(3) with vector components by the column arrangement

5 913
6 10 14
7 11 15 (4)
8 12 16

E- N

The second difference operator has the following star in the x-y plane

1 -41f1 (5)

We may now lay this star down in the (x,y)-plane {(4) and move it around.
Unfortunately with just 16 points, much of what you see is dominated by edges
and corners. We will try every position of the star which allows the center
-4 to overlay ane of the 16 points. Never mind the 1's going off the sides.
Start with the -4 over the 1 in the upper left corner. Observe 1's on the 2
and the 5. Then put the -4 over the 2. Observe 1's on the 1, 3, and 6. Then
put the -4 over the 3. Observe 1°s on the 2, 4, and 7. Continuing Tikewise
the results may be tabulated in the following 16-by-16 square table which is
canveniently numbered 1 thru 16 along the top and along the right.
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1 2 3 4 5 6 7 8 9101112 13 14 15 16

-4 1 1 1
1 -4 1 1 2
1 -4 1 1 3

1 -4 1 4

1 -4 1 1 5
1 1 -4 1 1 6

1 . . 1-4 1 . . 1 7

1 1 -4 1 8
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1 . . 1-4 1 14
1 . . 1-4 1 15
I . . 1-4 16

(6)

Now that (6) has been constructed we can return to the interpretation of equa-
tion {2). The matrix of unknowns Tt+1 has been mapped into a 16-point column
vector, and the bracketed expression multiplying T can be mapped into a

16-by=-16 matrix. Clearly, the matrix contains ze:;i everywhere that (8) con-
tains zeros. It seems fortunate that (6) contains many zeros and we can hope
for a rapid solution method for the simulitaneous equations. The bad news is
that no good method has ever been found, despite the efforts of many profes-
sionals. The best methods seem to be proportional to N3 where in this case
N=4. Based on our experience in one dimension we had hoped for a method pro-
portional to Nz, which is the cost of an explicit method, essentially, the
cost of computing the right side of (2). Even all the nice features of impli-
¢it methods do not justify a factor of N of additional cost. The next best
thing 1s the splitting method, described 1n the next chapter.



291

chapters where we saw that in two space dimensions the Crank-Nicolson method
becames prohibitively costly, while the explicit methods raise stability con-

cerns and can also become very costly.

On first sight, some people regard splitting as obviously valid while
other people are troubled by it. Perhaps it is related to the old paradex of
the length of & stairway compared to the length of a ramp. In the limit of
smailer and smaller step size, should these not have the same length? After
discussion of applications we will return to a proof of the validity of split-

ting, thus showing the irrelevance of the ramp-and-stairway paradox.

Full Separation

Splitting can turn out to be much more accurate than you might 1magine.
In many important cases there is no loss of accuracy. Then we can take the
method to an extreme 1imit. Think about a radical approach to equations {2a)
and (2b) 1in which, 1nstead of alternating back and forth between them at
alternate time steps, what is done 1s to march (2a) through all time steps.
Then this intermediate result is used as an initial condition for (2b), which
is marched through all time steps to produce a final result. It might seem
surprising that this radical method can produce the correct solution to equa-
tion (1). But in fact, 1f ¢ 15 a constant function of x and y, this radi-
cal method does produce the right answer. The process is depicted in figure 1
for an impulsive initial disturbance. A differential equation 1like {1) is
said to be fully separable when the correct solution 1s obtainable by the rad-
ical method. It should not be too surprising that full separation works when
¢ 1is a constant, because then Fourier transformation may be used, and it is
obvious that exp[v(ki + k;)t] equals the product exp(ckit) exp(ckst). It
turns out, and we will later show, that the condition required for applicabil-
ity of full separation is that caxx should commute with cﬁyy. Technically
there. is also a boundary condition requirement, but there is no problem when

the disturbance dies out before reaching a boundary.

Surprisingly, no notice is made of full separability in many textbooks on
numerical solutions. Perhaps this is because the total number of additions
and multiplications 1s the same whether a solution 1s found by spliitting or by

full separation. But as a practical matter, costs for large problems do not



