MINIMUM-ENTROPY DECISION ANALYSIS

Alfonso Gonzalez-Serrano

Abstract

The concept of minimum-entropy decision analysis 1is reviewed. Max imum
1ikelihood 1is defined as a process which optimizes error probability, thus
minimizing entropy. Some bounds on error probability are derived based on the
Tchebyscheff inequality and the union bound. The concepts are illustrated with
the additive white Gaussian noise channel. An example for a picking algorithm
is discussed, where performance is optimized by introducing memory in the sys-

tem.

Introduction

Entropy, as 1is discussed in a paper by Claerbout in this report (p. )
is a measure of the expected information of a system. Any data processing
dealing with minimum-entropy tries to optimize the probability distributions

associated with the system.

This paper reviews some <ideas on minimum-entropy decision analysis.
Starting from definitions we find bounds and the associated probability dis-
tributions for maximum entropy situations. An important result shows that for

a given system, memory reduces entropy, while data processing increases it.

Maximum-1ikelihood decision is defined as a minimum-entropy process which
optimizes error probability when nothing is known about the distribution of

the inputs. The structure of the decision process makes dynamic programning
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techniques, namely the Viterbi algorithm, feasible to solve for the most prob-
able state of a system from noisy data. To evaluate the performance of this
decision process some bounds on errdf probability are presented: they are
either generalizations of the Tchebyscheff inequality or extensions of the
union bound for probability distributions. The particular case of an additive

white Gaussian noise channel is used as an example.

Finally, an example of practical application 1is shown. We take the prob-
lem of picking times to align a given event through a suite of traces. We show
that a procedure based on crosscorrelation followed by picking maximum ampli-
tudes assumes a maximum-entropy situation. We show that this process is
severely limited in performance by the signal-to-noise ratio. Introducing

memory in the system helps to improve performance.

The theoretical part follows in particular the treatments by Gallager
(1968) and Viterbi (1969).

Theory

i) Entropy

Consider a random variable u taking values from a finite alphabet

U= (al,az,---,aA) with probabilities P(ak) Yk=1,2,---,A. The self-
information of the event “k when the random variable takes the wvalue
u(ak) =, is defined as

I(ak) = -1ogﬂ P(ak) (1)

The base 8 of the logarithm is arbitrary and determines the numerical scale
used to measure information. For base 8 = 2 the numerical value of I is given
in bits and intuitively will equal the number of yes-no questions we would
need to ask to completely identify the event a -
A more important quantity than self-information is its expectation, or

entropy
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A
H(U) = E{I(a )} = kfl P(ak)I(ak)

1
Flw) (2)

= 2 P{u) 1o
(u) 9g
u
For a continuous distribution the alternative definition is

+00

H(UY = S P{u) logp F(%T du {3)

From these definitions it is easy to find bounds for the entropy of an

information source.

Consider the inequality between the functions 1n x and x-1 sketched 1in

figure 1

Inx £ x -1 (4)

In the discrete case we have that, for any two arbitrary distributions P(u)

and Q(u) over the alphabet U,

Q(u) -1 Q(u) _ _
E P(u) IOQp P lu) < (1nB) 3 P{u) [P(u) 1] = 0 (5)
Therefore,
0 < 2 P(u) log _1 < 32 P(u) log i (6)
" 8 P(u) " B Q(u)

In particular let Q(u) be uniformly distributed:
Q(u) = 1 Y uel = {(a,,a,, "",a,)
A 1’72 *TA

Using this distribution, in inequality (6) we get
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FIG. 1. Sketch of the functions In x and x-1.
1
0 £ 2 P(u) 1095 F-('J—)— = H(U) < 1ogﬁ A (7)

u

therefore, for discrete distributions the uniform will attain the upper bound,

i.e. there will be total uncertainty about outcomes.

In the continuous case we can use again the inequality (4). For a dis-

tribution P{(u) with moments

+00
J uP(u) du = 0
- Q0

+ 00

J 2 P(u) du = 62

- 00
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let Q(u) be Normally distributed as N(U,cz)

2
.
2
o(u) = 1 e 20
2, %
(2w0")
using these distributions we get
+00 1 +00 5.3 u2
J P(u) log, ——du = J P(u) log, (2we“) 7 exp| ——| du
" 8 Q(u) Cw 8 202
+00 9 L uZ
= J P(u) 1095 (200 )" r— 1ogB e | du
-00 20
T loga Zrecz
Therefore,
. 2
H(U) £ % 1ogﬂ 2xec (8)

In the continuous case a normal distribution has maximum-entropy.

A useful inequality for non-independent probability distributions is also
obtaihed from inequality (6). Whenever there is dependence among events, we

have memory on the system. Let

N
QN(u) = n P(un)
n=1
where
P(un) = X - 2z z e 2 PN(u)
Y1 Yn-1 Ynel YN

Substituting this distribution in inequality (6),
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H(UN) z PN(u) log

R
u ] PN(U)

1
£ 2P (u) log, ———
y N B ON(U)

= Z PN(u) 1ogﬂ —ﬁ——l——~—

u
I P(un)
n=1

"
M=

1
P(un) logﬂ FTU;T

n=1

N H(U) (9)

we see that memory decreases entropy.

x System y J System z
—_— —
A B
x € X vy ey ] z € 27

FIG. 2. Two systems 1in cascade. Discrete memoryless systems.

To prove that data processing can only increase the entropy of a system con-

sider the definition of mutual-information between events x and y

I{x;y) = 109ﬁ Pix) (10)



This 1is the information provided about event x by the occurrence of event Y.

Its expectation

I(X:Y) = E{I(x:;y)} (11)
- —plylx)
T EE Ryl abd 108 I 4t
xl
where
p(x,¥) = q(x) p(ylx)

is the average mutual information. Consider the systems in cascade shown in
figure 2. The random variables x,y,z have a joint probability distribution
p{x,y,z) VY xeX, YeY, zel. We need a relationship between the mutual-

information of dinputs and outputs to the systems. Taking the difference,

I(X;Z) - I(X;Y)

(zIx)ply)
f 3 f p(x.y.2) Togg o TN

-1 (zlx)p(y)
(1n8) f 3 f p(x.y.z) 1n p(z)p(ylx)

"

A

-1 (zlx)p(y) _
(1nB) f 3 f p(x.¥.2) [p(z)p(y|X) 1]

and using Bayes’ rule

p(x.y.z)p(z[x)pl{y)
p(z)p(ylx)

= p(zly)pi{xlz)p(y)

where we used the fact implied by the system

pl{zlx,y) = p(zly)

it can be seen that
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1(X;2) - 1(X:Y) € (1n8) " [2 22 a(zly)pixlz)ply) - 1]
Z y X

- ) [ 2 ptzivney) - 1] - 0 (12)
z ¥
From this result it follows that
I(X;2) < I(X:Y) (13)
I(X:;Z) < I(Y:Z) (14)

Similarly, for the three systems 1in cascade shown 1in figure 3,

I(W;Z) S I{X:;Y) (15)
1
w X y z
E— A > B 7 C >
weEeW x £ X yeyY z € Z

FIG. 3. Data-processing systems in cascade. Discrete memoryless systems.
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This result is known as the data-processing theorem and states that in a
cascade of systems, the introduction of a new system (or process) will weaken
the dependence between input and output, therefore reducing the average

mutual-information.

ii) Maximum-1ikelihood decision

Consider ths situation arising in communication systems theory. A message
m from a finite set of messages Hm Y me{l,2, --,M} is chosen and encoded 1into

a digital vector x_ = {x_..,x *,X .}, where the x are elements from a
m ml' m mn

g
finite discrete alphabet of length A

mN

N N
xm € X = {al'az' ,8A}
n
n
X y., =X _+n
mn n mn, n
+ v

FIG. 4. Additive white Gaussian noise channel.

The message vector is transmitted over a noisy channel and the sequence y
is observed (figure 4). The channel can be characterized by a transition pro-

bability function from all possible inputs xm to all possible observations y

pN(nym)
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where the subscript N denotes the dimension of the vectors in question.

It is clear that only when the chanrel 1is noiseless will the vector of
observations y uniquely determine the input message, but in the general situa-

tion there is some uncertainty about the input.

Suppose that when the vector y takes on some particular value we make the
decision Hﬁ = Hm' The problem is to decide which message was transmitted 1in
order to optimize the performance of the channel. In other words we want to

minimize the error of the decision

The probability of error in this decision, denoted as PE(Hm;y), is

PE(Hm;y) Pr{Hmnot sent|y}

1 - Pr{HmsentIy} (186)

An optimum decision rule would be

= H 1 Pr{H sent|y} =2 Pr{H_,sently} V¥ m#m! (17)

Using Bayes’ rule on the a priori probability term,

P{Hmsent} P(yIHmsent}

P{Hmsently} = Ty (18)

we can rewrite inequality (17) as a function of a posteriori probabilities
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P{Hmsent} P{ylesent}

A=t if Piy) ?

P{Hm,sent} P{yle,sent}
P{y}

Y mem! (19)

where we have considered ties as errors. It is clear the decision does not

depend on P{y}.

Next, since we know the mapping from message to code vector Hm - xm is

one to one, we can rewrite this last equation as
- 3 1
= H if Prixg) pyix ) > pyx ) pydyix ) Y mem (20)

The a priori probabilities p(xm), if known, reduce the entropy 1in the decision
because they are information from the source we know 1in advance. In the gen-
eral case, however, we do not know any a priori information about the source;
to avoid introducing spurious information we have to assume a maximum-entropy
source. For this kind of source we talk about maximum-1ikelihood decision and

the optimal rule is simply
- 1 ]
= H if pN(ylxm) > pN(ylxm,) Y mo#m (21)

For the particular case of a memoryless channel we can rewrite inequality (21)

as

) Y m#m' (22)

Finally a useful form is obtained taking 1logarithms; this 1is called the
metric:

N N
- t
= H if nfl Tn p(ynlxmn) > nfl In p(ynlxm,n) V m#m (23)

The maximum-1ikelihood decoder therefore looks at all the metrics for each

possible signal, compares them, and decides in favor aof the maximum.
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ii1) Error Probability

Gallager (1968) computes some bounds on error probability for maximum-
1ikelihood decoding. These bounds are generalizations of the Tchebyscheff ine-
quality, or follow from the union bound on probabilities. They are useful
because it is not always practical or even possible to compute the PE exactly,
and because in some situations they give a tighter bound than the Tchebys-
cheff. We follow Gallager (1968) and Viterbi (1969) in the derivation.

For a random variable u, taking only nonnegative values, the Tchebyscheff

inequality states

Pr(uz8) « Vi8>0 (24)

Another form of the inequality can be obtained defining new variables
L
u = (w - E{w})2 and € = § *:

2 2
Prllw - E{w}| 2 e] <« EL¥ 5{"}) LA 55 (25)
€ €
Another inequality can be obtained by letting u = esw ¥V seR, denoting by
gw(s) the moment generating function of w
g (s) = E{e**)
W
and defining 8 = eSA Y AeR we get the so called Chernoff bound
Pr[esw 2 eSA] < e—SAgw(s) ¥ s,AeR
Equivalently,
Prlw = Al < e'SAgw(s) YVAeR, s>0 (26)

Priw £ Al < e-SAgw(s) VAeR, s<0 (27)
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These bounds are useful only for tails of distributions. Therefore ine-
quality (26) 1s wuseful only 1f A > E{w} and inequality (27) when A < E{w}.
Gallager (1968) gives some examples on tﬂe behavior of these bounds for dif-
ferent normal distributions for the important case when w is & sum of random
variables. His conclusion is that the Chernoff bound is a poor approximation

when A is close to E{w} (for small s), but for large A the bound is good.

Next consider the union bound on probabilities, for a set of events with

probabilities P(Al), e P(AM), the probability of their union is

M
P[ U Am (28)
m=1

It follows that
=1

M M p
P[ U A £ [ 2 P(A )] Y 0<psl (29)
m m m=1 m

For maximum-1ikelihood decoding we can define decision regions using inequal-
ity (23) as

.
i

{y: In pN(ylxm) > 1n pN(ylxm,) Y m'#m} (30)

From the definition the sets are disjoint:

A NA = g YV k#j

We will make an error in the decision if yeAm, given that X, was sent. Using

the union bound we have

PE(nym) < P[ ? Am'}
m'Em

p

< 2 P(Am,) vV 0<psl (31)
m'#m
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The inequality follows from the fact that the maximum-likelihood decision does

not necessarily make an error in case of ties.

Since for an erroneous decision we have

pulylix_,)

—ET;T;ET— 2 1 for some m'#m

pN m
This implies

A
p2 __(-|—X—5— z 1 VyeAm A>0
m'#m pN y m *
where we have defined
= . 1
A, = {y:n Pylyixg) > 1n ML Y, Y m'#m}

Using this result we can write for P(Am,)

A

p lylx_ )

P(A) s T | T vV A0
m m'#m pN(Y|xm)

Substituting this into equation (31) we get

p

X
pN(y|xm.)
PE(nym) < l(M - 1) mz

e Y x>0, p>0
I*m pN(nym)

Using A = 1/(1 + p) we get the Gallager bound

P
Pelylx ) s itpN(ylxm)Jl"“*") {mz [pN<y|xm.)1”“*“} ¥ 0

'#m

(32)

(33)

(34)

(35)

(36)

(37)
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For the particular case p = 1 this bound is known as the Bhattacharyya
bound

Pelylxg) < 2 Iay(ylx)1* 2 [py(ylx,)1° (38)
Y m'#m

iv) Additive white Gaussian noise channel

To illustrate an application of the decision theory the additive white
Gaussian noise channel 1s used, figure 4. This process with white spectral

density is defined to have the covariance

NO
R(e) = 5= B(r) (39)

where §(¢) is the Dirac delta functian, and N0 the one-sided noise power spec-

tral density.

The conditional probability function for this process is therefore

N
pN(nym) = II P(ynlxmn)
n=1
2
- Ly -x_1"/N
- 1 —e n mn 0 (40)
(wNo)2

The decoding regions for this channel are given by
= H if yel

A
m m m

where

-
4]

{y: In pN(ylxm) > In pN(nym.) Y m'#m}
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p(ynlxm.n)
- L . 2 1 - 2 '
= QY Iy xm.ll T Iy meI >0 ¥V m'#m (41)
0 0
and
N
2 2
Iz~ = 2 z (42)
n=1

Define the energy of the signal m as

2 = lix Il (43)

and denoting the dot product between vectors x and y as <x|y>, we can rewrite

equation (41) as

Il

(

2 m Em')
A = Qy: —<x_ -~ x_,ly> - —————— >0 V m'vm (44)
0 m No

For this channel the expected probability of error can be calculated
exactly. From equation (44) the probability PE(m > m') of an error when the

message m is sent and m' is the only alternative, ‘s

(B2 -E )
2 m m' | .
] - an— - e ]
PE(m - m') = Pr{NU <xm xm,|y> £ No lxm} (45)
Defining & new random variable
VA = 2 X~ x_ ly> (46)
mm' = N0 m me!Y

its distribution can be found remembering that Yo is a Gausstan vrandom vari-

able by assumption, with mean XN and variance NO/Z' me, is & linear combina-

tion of independent Gaussian random variables:; therefore it is Gaussian with
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mean

= _g.. I -~- =
ECZ 1%} N [.e.m <xm,lxm>] = (47)
and variance
2 2 2 _ 2
E{(me. - uz) } o= N'-O- |I><m - xm.II = 0 (48)
Using these values in equation (45) we get
o o
. e L 2,2
P(m=m') = [ " exp[— P ~ 4 /2‘2] dz
E -0 2. % mm'
(2x0°)
z
Flx = x 11
= Q % (49)
(2Ng)
where Q(.) is the Gaussian integral
-8 2
o) = —Lo s e ¥ 7% 4 (50)
(2x) * -

Finally, consider the particular case when all the events have the same
energy given by

N\H

mn amn (51)

For this signal set we can use equation (40) to find its probability distribu-
tion: it 1s given by
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Therefore
+00 +00 +00 +00
ply Ix ) = J dy, - J dy,  Jf dy . J dyy Py(yIx)
- 00 - 00 =~ 00 =00
2 2
+00 e- yI/NO +00 e— yN/NO 1 - [ym
e N s
-0 (tNO) -0 (rNO) (wNO)
- Ly, - 9%
. 1 Ym 0
= " % e
(xNgy)
The probability of error is given as
] -
PE(m - nm') Pr{ym < yml}
- L
Y - Ty - 2%
1 0
= J - e dy_
-0 (wNg)”
Changing variables
't
ym - &
X = —
(NO/Z)
we get
't
yml + &2
= T
(N,/2)* Y
PE(m +m') = J:w 0 L T x/2 dx
(2%)*°

(53)

(54)

(55)

(56)



217

-oas g0 sem yibuay
Joqedado 8yl ¢sadeJl DULULBPWAJ 3y} YlLlM UDLEIR[SJJODSOJD 3Yl JOJ @dU3JIaL ®
Se pasn SBM 32BJJ 3SJlJ 3yl Ul O3S pE°Z 3B JUIAD 3y, °"BIBP 40 MOPULM "§ "9Id

"2 v e 6 ¢ | 9°¢ L°¢ 8° ¢ 6°¢
Lo | (—.\.H 1 7 I
e N et B [t U Yy o
e V/[\ \'v/..\
br | —-— . ] - | | et
ot ] [ ] l'/:\.}l\»lll
Lo, N .
o - —_— 4 /;M\\) |t I
| . ot -~ e I
\ £ SEeSFSEasenseteae
| ot | L »(\\}:\.\ o \'r/l.l.\..
§R s g — O et S D N .
|| Ill:!.\'/l\\il S — — -
- \l-’{\\‘ l}llzl\i(‘\l’ffl\») | i | —_—
h g | o -
\l
g \r/unHHWnl;!1 1\|llr//L\l/z\Ll7:lfllx S I g = A
/l\.\\-/x. pn | \’(\ﬁ.‘\t{f\'r\\l'/ | -
t\ g ”!l\ H ..!\tlr “/l\ — ﬂ'. — \"
N K . ,\.. = et Susmat wa N
PR N N T TP N N NP
N "~} | e e L e WL b
o _ [ _
e Ve G2 L2 82 6°¢



218

Next, the overall

Tows:

Pe = Priy <y,

= 1 - Pr{ym, < Y

M
= 1 - I
m#m*

M
= 1 - I
m'#m

and using equation (56)

Y mem!' | x

1}

1
Y mem! | xm}

Pr{ym. s ymlxm}

[1 - Pe(m ! )]

The final form is obtained by taking the expectation, since

E{ym.lxm) =

EC(y, -ECy D2 )

Using

we get

ECP.} = 1 - -
(22) * -o

+00 2
LT b ) w

0

M-1

probability of error for message m can be found as fol-

(57)

(58)

(59)
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Using this result Viterbi (1979) finds the optimum expected performance
of the system, taking the 1imit

1 if Eb/N0 < 1n 2
lim E{P_} = - (60)
Moo E 0 if Ab/N0 > 1In 2
where
-
= E, log, M (61)

is the energy per bit. This is a remarkable bound since it states that for a
maximum-entropy situation 1in a system under the assumed constraints, if the
signal-to-noise ratio per bit of information is below 1n 2, then, regardless
of both our method for finding a decision and the sampling rate, the probabil-
ity of error goes asymptotically to one. If the signal-to-noise ratio is

above this threshold, the probability of error goes asymptotically to zero.

Example

Consider the following problem. Take a window of data with M time samples

and a single event. In the absence of noise we can get the event in any of

L~}

L
the M positions as a spike of amplitude E® and zeroes everywhere else. Far an
ensemble of N traces let us consider the maximum-entropy case and denote the
time of the event in trace n as t V0O <n<N-1 0 <m <M. This times

nm
are uniformly distributed as

P(t ) =

L V 0<n<N 0<m<HM
nm M

The problem is to align all events along a given t Therefore we need

0
to find the time shift to perform to each trace
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The problem 1s trivial in the absence of noise. However if there s
noise 1in the channel, by equation (60) we know that the probability of error
(picking an erroneous arrival as an event), will go to one for low signal-to-

noise ratios.

The conventional procedure for picking time shifts to be used in solving
the statics equation, is equivalent to this maximum-entropy situation, and is

therefore very sensitive to the signal-to-noise ratio.

However, we can improve the situation. From equation (9) we know that any
conditioning or memory 1in the system will reduce entropy. This immediately
suggests a Markoff situation for the time-picking process. It is clear we want
to keep coherency for the events through the traces for the selected event;
thus a decision considering both the times and amplitudes of events will be

more robust than the memoryless maximum-entropy situation.

For the implementation, we start crosscorrelating with a reference trace,
and instead of 1looking gjust at the maximum amplitude, we select a set of
events which qualiify as allowable choices, both in terms of amplitude and time
position. Call each picked event a state. Then define a transition probability
function which will be a measure of the cost in going from a current state to
the next one. We can use the maximum-likelihood decision procedure of equation

(21) and the Viterbi algorithm (Forney, 1973) to find the optimum decision.

Results

As an example we used the data window shown in figure 5. The first trace
was used for the crosscorreiation and the goal was to align all events along

t0 = 2.34 sec from the event in the first trace.

We picked as states all events with amplitudes above a threshold
A2 eAmax' In the examples € = 0.6 was used. The probability function was

defined as

Pr{transition from state k of trace 1 to state f of trace i+l} =

P{At

ik » e1,f) = aP(A) + (1-a)P(T) (62)



221

where
Az+1 f
P(AY = Pr{Amplitude} = ——im (63)
zA"_f
j 3
k
| At |
ik =» i+1,f z V AL#0
P(T) = Pr{Time difference} = | ? IAt1,k . 1+1“].I (64)
1 AT=0

Figures 6 and 7 sketch these probability distributions for different values of
% and §.

The probability function as defined is very flexible in dits parameters.
In general, however, the probability as a function of time difference is
strongly weighted toward small jumps, so the choice of the weight « in equa-

tion (62) must compromise this bias with amplitudes.

The results of applying the algorithm with different values of a« and
n =2, £ = -2, are shown in figures 8 and 9. Figure 8 plots the curve defined
as the minimum cost route for the given data and probability functions; the
range goes from the conventional procedure of looking only at amplitudes
(e = 1), to the case of neglecting them (a = 0). The corresponding traces
with the time shifts defined from these curves are shown in figure 9. Note in
particular the curve when no amplitude information was considered at all: the

results are better than when we only consider amplitudes.
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P(4A)

FIG. 6. Probability distributtons for the amplitude of an event plotted for
different values of exponent.
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FIG. 7. Probability distributions for time difference betwean pairs of events
for different values of exponent.
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