GILDING THE BORN APPROXIMATION

Robert H. Stolt

In its simplest (and wmost computable) form the Born approximation
requires the user to 1nput a constant background velocity. Since the Born
approximation propagates waves at the background velocity, it can result in a
poor estimation of both the location and magnitude of velocity changes. A
variable background velocity may be approximated (at least for the scalar wave
problem) by stretching the time axis, but that gives rise to other problems.

In any event, multiple reflections are treated as if they didn’'t exist.

Some of the shortcomings of the simple Born approximation can be overcome
at a cost, by going to its "distorted wave" form. Basically this amounts to
using as the "unperturbed" wave equation a variable-parameter equation with
known solutions. For example, since 1t appears we may solve for a layered
medium using the Gelfand-lLevitan technique, suppose we have derived an esti-
mate K(z),p(2).v(z) = \rf7f of "average" bulk modulus, density and velocity
versus depth. We may then calculate fairly rapidly an impulse response G0
to wuse 1in the Born approximation to the real impulse response G. Here's how

it might work: Start with the real wave equation
1 a)z
V. ;-V7+ " v = 0 (1)

with the unknown coefficients K and p. We wish to put (1) into the form of
a Schroedinger equation, plus a potential term. We make a depth-to-traveltime

conversion using the velocity estimate Vv{z):
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Z 4z
= = 2
r ng(Z) (2)
in terms of which the wave equation is
1 1 1 2
89 =9 + w3 —wd + |y = 9
X p X vV ¢ pv T K
Now, define the parameter 9g(x,z) by
1
n o= - (3)
v
and rescale the wave function ¢ as
¢ = ny
Then, the wave equation for ¢ is
2 ., 1 1 2.1
v ax L] ax g * ;—6? ] af T " ke ¢ = 0
Now we invoke the identity
25 ¢
a G = -
t " %rw T "%t
where ¢ may be either x or r. The wave equation for ¢ becomes
2.2 2 2% 1,2
v ax + az + W ;5-— ;-(v Tex * "Tf) ¢ = 0 (4)
Now the system we can supposedly solve is
Vz 62 + 62 + 2 3:1 $ = 0 (5)
X r 7@ 9 o

with



105

7 - (6)

So, we define as our unperturbed wave oaperator

2 a2 2 Ter 2
LO(w) v ax + af - ; + W (7)
and as a potential
V(w,x,f) = u2 v -11 + i‘l’ - XX re (8)
v2 " n

It will prove convenient to distinguish between the frequency-dependent

and frequency-independent parts of the potential:

Vie,x,r) = wzvl(x,f) + Vz(x.f) (9)

It will also prove useful to have a Fourier transform (x = p) of the poten-
tial handy:

V(w,p,r) = L rax e " Pw.x.r)
2%
= wZVI(p.f) + Vy(p.7) (10)

The Born approximation requires that we construct anm impulse response Go(w)
for the unperturbed wave operatar Lo' This is most easily done 1f we take a
Fourier transform over x of Lo' since G0 will be diagonal 1in the P

representation. Go will have the form
<pr'rrIG°(u)lPs.fs> = G(pr-ps) Go(w.pr;rrlrs) (11)

with Go a solution of
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2 z "’rfr 2.2
- ——m— . = - - 12
6' + w - vip G0 (w,pr.rrlfs) G(fr rs) (12)

Given GD and V, the Born approximation then allows us to construct an approxi-

mation to the real impulse response G, or
G = G +6G V@G
o o ]
In the seismic experiment, we measure the response at a point (Xr.fr=0) to an
impulse at a point (xs.rs=0). The direct arrival is hopefully filtered out,

leaving a data field

Dlw.x |x_ ) = <& _,r =s0|G-G |x_,¢r_=0>
r’s r'r 0'"s" s

x L,0|6 VG |x ,0> (13)
r- o o 8§

It 1s convenient to Fourier transform LI Pe in this relation, giv-

ing
D (w.prlps) = <pr.ﬂlGOVGOIps.0>

Since G0 is diagonal in p, and v 1is diagonal in ¥, this equation takes a

simple integral form:

1
ﬂ 2%

D (w.prlps) = S dr G0 (w.pr;ﬂlr) V(w.pr-ps.r) Go(w,ps;rlﬂ) {14)

which is really less complicated than it looks. We can simplify the form of
(14) as follows:

Define a source-receiver midpoint wavenumber P = p_ - p
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Define a source-receiver offset wavenumber p = pr + ps

Redefine the data field in terms of these new coordinates:

o(w.pp) = Blw, B2 B

Define a transformation matrix F:

L6 (.

\Zr

—0}r) - Go(w.EégirIO)

Fz(u.P.pr) 5

Flw.P.plr) szz(w.P.plf)

Put all that in (14) and we get [remembering the decomposition (9) for V]

2
D{w,P,p} = 2 Jdr F (e,P,plr) V (P,7) {15)
wsl « o

For every value of P, the integral equation (15) must be invented to find
Vl and Vz. Counting indices we seem to have Nw X Np equations with
2 x Nr unknowns, indicating, as for the simple Born approximation, an

overdetermined problem.

There is no reason to suppose that the distorted wave approach wouldn't
work, or that reasonably economical means of inverting equation (15) wouldn’t
be found. [It 1s not even necessary that we require the "unperturbed” system
to be a layered medium, provided we can solve the forward problem for 1it, and
provided we are willing to put a second integral {over P) into (15).1 It is
not clear, however, exactly what we have. Since G0 in this case contains
multiple reflections, so will G, and the solution of (15) for V incorporates
an attempt to 1dentify and remove them. However, all waves will be propagating
with the estimated velocity V, so it is hard to imagine the technique really

doing & good job of identifying and removing multiples.

There are other games one can play with the Born approximation. If one

is indifferent to multiples, but wants to fellow the true velocity structure
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closely, approximate "one-way" Green's functions can be constructed wusing

finite-difference or finite-element techniques. Using these Green’'s functions

in the Born approximation amounts to firming up the squishy soft notions of

reflectivity used 1in contemporary migration schemes.




