Chapter III
Well Log Deglitching and Seismogram

Inversion

This chapter uses the Markov model of impedance proposed in Chapter
I to construct mathematical models for well log deglitching and seismo-
gram inversion. In the latter case, a deconvolution, free of any source
waveform and multiples, 1is converted into an impedance. In the faormer
case, it is possible to reduce the effect of measurement noise in well

logs.

The estimators, subsequently developed here, have memory, and in
this aspect differ considerably from those of Chapter II. In addition,
we adopt the maximum a posteriori estimator vs. the L-1 and L-2 estima-
tors of the previous chapter. Physically, the first estimator
corresponds to minimizing the entropy in a Markov chain, subject to the
constraint that the chain must be caonsistent with some observed data.
Before discussing the main application, that of seismogram inversion,
the deglitching model will be presented. Most of the concepts in this

chapter are covered in this example.

3.1. Well Log Deglitching

Assume that a well log, denoted by "1’ where j 15 the time dindex,
is to be quantized into M states. Furthermore, assume that the well log
contains noise glitches (measurement errors, background noise, etc.) and
that these glitches are to be excluded in the quantization process. It
seems reasonable that the quantized well log should resemble a Markov
chain characterized by some probability transition matrix (PTM). Denot-

ing the quantized log by zj. we have the following model:

n
N
+
==

Model: wj {3.1)

Given: well log w, PTM for Zj. distribution of {Nj}

Desire: 2
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As before, upper case refers to random variables (RVs), lower case to
values, and underscoring represents a vector. In general, Z‘1 is a
discrete RV whereas uj is continuous. For the time being, assume wj is
also discrete (i.e. the original well log has already been quantized and
a version free of noise glitches s desired). Temporarily replacing
vectors by scalars, we face the problem of computing an estimate of z,
denoted by ;, given an observation W (=5), where the two RVs Z and W
are related through the function Pr{(Z,W). When W is arbitrary., Pr{(Z.W)
represents a two-dimensional surface, but fixing one of the variables
(W=5) slices this surface and results in the one-dimensional function
Pr(Z|W=5). Perhaps the most 1intuitive estimator of 2z is to search for
the particular z that maximizes the latter function. Since Pr{Z|W=5) is
the distribution after data has been observed., this estimator is called
the maximum a posteriori (MAP) estimator. In the circumstance that
Pr(2|W=5) 1s symmetric, the MAP estimator is fdentical to both the con-
ditional mean and median of the last chapter. We have a slightly more
general problem in that a vector of observations (g) is given, rather
than simply a scalar (w). Extending the above analysis, the MAP estima-
tor of z is defined by solving the optimization problem:

IN?

(w) = max Pr(ZlW=w) (3.2)
z

Using Bayes’ rule, equation (3.2) can be rewritten as

N1

max
4

[Pr(HIZ)Pr(Z)]
Pr(W)

The maximization is accomplished by varying 2z, hence Pr(W) can be
ignored. Also, the estimator 1s unchanged if a monotone function 1is

applied to the term in brackets. Choosing the logarithm, we have

z = max {m[Pr(gly] + 1n[Pr(_Z_)]} (3.3)

Z

The reason for using Bayes’ rule: is now apparent, for

N
Pr(2) = Pr(ZO) nmer{(z |2

J—l) (3.43)
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N
Pr{WiZ) = T Pr(w,Z) (3.4b)

Both the Markov property of {Zj } and the fact that given {Zj} the RVs
{Uj} are independent (assuming white noise) have been used in equation

(3.4). Substituting equation (3.4) into (3.3) gives.

2 = min {1n 1 + g n N S + g n -—-——l—————-} {(3.%5)
- z Pr(Zo) 0 Pr(UJIZJ) 1 PF(ZJ|ZJ_1)

The term Pr(wjlzj) in equation (3.5) represents the probability mass
function of the noise. Physically, it corresponds to the reliability of
a well-logging device. Different functions can be used depending on the
type of rock (state) the device is operating in. The particular function
we’ve chosen 1s illustrated in Figure 3.1. It means that either the
correct or wrong measurement (with probability ratio $) is recorded. The
term Pr(ZJIZJ_l) represents the PTM of the chain {Zj} and Pr(ZO) refers
to the probability mass function.

?Pr(\r{,"ZJ?

N O i O

3

Figure 3.1. Given that the actual impedance is z, the probability
that w 1s actually observed 1s shown abave. The probability of wmaking no
error is large {=A) but the probability of making a large error or a
small error 1s tdentical (=B). The signal to noise ratio, denoted by S,
is defined as the ratio of A to B.
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The algorithm developed to minimize equation {(3.5) was invented by
Viterbi [see Forney (1973)] and is commonly calied the Viterbi Algorithm
(VA). The VA uses dynamic programming to choose the sequence of states,
such that the RHS of equation (3.5) is minimized. Equating inverse pro-
bability with cost (penalty), the VA finds the path having the minimum
cost. Assuming diagonally dominant PTMs, changes of state are attained
only at a high cost. Balancing this tendency to remain in the same state
is the cost of choosing & state at time i that doesn’t match the obser-
vation wj. The VA steers a path through these conflicting requirements.
3.2. The Viterbi Algorithm

To understand the VA, we rewrite equation (3.5) 1in an explicit form

involving the states (sl,sz,...,sM):
z = min ? (de + Tkij) (3.6a)
M, = -1n[Pr(wJ=wj|QJ=sk)] - 1n[Pr(oj=sk)]sjo (3.6b)
Tk1j = —1n[Pr(Qj+1=s1IQJ=sk)] (3.6c)

Note that 1in equations (3.6b) and (3.6c), the RV ZJ has been replaced by
the outcome function Qj. The sequence of states must be chosen to minim-
ize equation (3.6a). To facilitate the following discussion, consider
the state-time lattice illustrated in Figure 3.2.

At time j=0, the cost function, c1j. is injtialized for each state

0 * My
To update the cost function, isolate 51 at time j=1, and scan the entire
state space at time 0 to find the path that minimizes the cost (minimal
path}:
LT m;n Mg * T

g 1TLe2a M (3.7)
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Figure 3.2. A state-time lattice for M=3. At time 1, state 2 has
been isolated. The minimal path 1s found after scanning the entire state
space at time zero.

This step fixes the computational cost at M2 per time step. Equation
(3.7) is repeated at every time step, 1.e.

= M + m;n (ij + T )

c1..j+1 1,3+1 kij

Note that the algorithm sti111 hasn't chosen the optimal sequence of
states. The optimal sequence 1s chosen when (&) the end of the laog is
reached, or (b) a "knot" is encountered. At the end of the well 1log,
the state having the minimal cost is chosen (assuming a knot does not
exist). A "knot" is specified by demanding that the state sequence ter-
minate (and is then re-initiated) at a given state at a particular point
in time. The remaining states in the optimal sequence are then deter-
mined by passing backwards through the lattice using the minimal paths
determined in the forward pass. There 1is one other instance when a seg-
ment of the optimal state sequence can be chosen. Say at time j the
minimal path to every state is initiated by a particular state (call it
sq) at time j-1. The lattice is said to have "merged" and the first j-1

states of the sequence are therefore fixed.

To illustrate the VA applied to deglitching, Figure 3.3 shows the
resuit of applying the VA to the three quantized logs of Chapter I. The
PTM used 1in each case was the appropriate telegraph PTM and S$=50. Note

that some of the noise glitches removed are actually guantization noise
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created by the initial quantization of the well logs.

3.3. Seismogram Inversion - The Model

This section formalizes the problem of seismogram inversion by
introducing a mathematical model relating the deconvolved seismogram to
impedance. A speculation 1s that the same technique can be used itera-
tively, using the original seismogram as input.

Denoting the deconvolved seismogram by x‘1 and the reflection

sequence by cj , we have the following equation relating xj and cj:

B.x, = ¢, +n (3.8)

In equation (3.8), n, represents additive and convolutional noise and ﬂj

is a scale factor, pgssib1y time-varying. In practice, the scale factor
1s chosen by calibrating xj against a nearby well log, and henceforth we
assume that xj has been pre-scaled, so that Bj can be ignored. The
reflection sequence {Cj} is related to the impedance sequence {Zj}

through a differential (incorporating a factor of 2 in {CJ}):

In Chapter I, it was shown that if {ZJ} is an M-state Markov chain, then

{Cj} is also Markov, provided that the state-space 1s expanded to M2

states. This means that equation (3.8) 1is in the standard form for

application of the VA:

Model: X = Y - 1. N. 3.9
ode ; ( J) L ( )

j+1
Given: decon. x, PTM for Zj. Distribution of {N}

Desire: Z

Actually, one additional piece of information is wusually provided,
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(a) j}L‘—JL‘—‘——"'__\

(b)

(c)

Figure 3.3. Deglitching the three logs of Chapter 1. Note the
removal of quantization noise. For this example, the PTM used was PT
and the noise parameter S=50.
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namely the mean-square velocity, Qi, s specified at certain time points

or picks:

[y

— M
<
—e

(3.10)

In equation (3.10), the interval velocity, vj, is related to the
Jog(imped), zj. via

= ex 3.11
v, o= vy exp(z)) (3.11)
In equation (3.11), density is assumed constant. This assumption is
removable if velocity-compaction laws are incorporated in equation
(3.11). The VA as applied to equation (3.9) is similar to the deglitch-
ing problem, with a few 1important distinctions. The next section

discusses these differences in detail.

3.4. Seismogram Inversion - The Algorithm

There are three major differences between the +implementations of

the VA for seismogram inversion and deglitching.

First, using the special structure of the reflectivity state space,
it 1s possible to reduce the cost of the algorithm to a term propor-
tional to HZ vs. M4 per time step. Figure 3.4 illustrates how the reduc-
tion is achieved. Essentially, the key observation is to recognize that
the minimal path to each state in the qth terminator group is identical
and can be 1initiated only by a state within the qth initiator group.
Since there are both M initiater and terminator groups, the M2 term is

apparent.

Second, it is conceptually attractive to retain the continuous
nature of the RV Xj, whereas in the deglitching problem we gquantized
the observations. This is feasible, provided the term Pr(lecj) 1s
defined by

dx dx
Pr(XJICj) = Pr(x-E— <X .8 X+3 |Cd-c)

J
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Figure 3.4. Two adjacent time steps (J,J+1) in the state-time lat-
tice for the reflectivity state space (M=3). Each state within a termi-
nator group (TG) has the same minimal path. This path can be initiated
only by a state within the corresponding initiator group (IG). Using
tais strHcture. the algorithm cost is reduced to a term proportional to
M~ vs. M.

= fN(x-c)dx

Since dx is a constant, not influencing the MAP estimator, it can be

ighored:
Pr(XJICJ) = fN(x-c)

In practice, a Gaussian distribution was used for {Nj}.
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The third difference is the most important. 1In the deglitching
problem, if the states (or rocks) were known at a particular set of time
points, a carresponding set of knots could be prescribed in the VA and
the optimal path between knots could then be computed. Unfortunately, a
;i pick doesn’t fix the interval velocity but rather the average square
of the 1interval velocity up to the time pick. To incorporate these
inteqgrated measurements in the VA, an 1intuitive, sub-optimal solution
can be effected by considering them to constitute a new set of "observa-
tions." It is necessdary to interpolate between picks to extend the range
of "observations." A new cost function can then be defined by prescrib-
ing a conditional probability function relating the actual wmean square
velocity, 9?. with that obtained by integrating along each minimal path

in the state-time lattice, 33. The Gaussian function 1is convenient to

use:

~2 -2.2
-(V.-vj) )

2

w2 ~2 =2 -2
Pr(Vj-vJIVj—vJ) = exp )
v

J

or

~2 =2.2
(v vj)

-1og[Pr( | )] =‘——i—5——~ (3.12)
20
v
i

By choosing cs appropriately, a "tube" through which the mean-square
k|
velocity 1is allowed to range is defined. Conceptually, the tube is nar-

row at those points where the Gg picks are located and gradually widens

to a maximum, midway between picks. Figure 3.5 illustrates this point.

To show how the low frequency component can be restored in an
inverted deconvolution by wusing the mean square velocity picks as an
additional set of "observations," a field recording was simulated. A
tow-cut filter was applied to the first reflectivity sequence of Chapter
I (Figure 3.6). We assumed, however, that the mean sguare velocity (or
equivalently, the mean square impedance in this example) was known at 7

points (shown 1n Figure 3.7). Interpolating linearly between the known
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Figure 3.5. Contours of a hypothetical mean square velocity cost
function. At the three picks, the tube narrows, forcing the mean square
velocity to be close to the picked velocity. Midway between picks, the
tube reaches 1ts maximum width. A section perpendicular to the line
Joining picks has an inverted Gaussian profile if a Gaussian probability
function 1s used to describe the cost function.

picks provided us with another set of “observations" (the filtered
reflectivity constituting the first set). Using the technique outlined
above, Figure 3.8 shows the output of the VA. It is evident that the
trend has been restored. Of course, the success of the algorithm is

correlated with the density of mean square velocity picks.

Finally, we note that the concept that impedance is physically con-
fined to values within a maximum and minimum "corridor" is inherent in
the VA. This prevents random walks from occurring outside the corridor
when a deconvolution is inverted. Figure 3.9 illustrates the point with
a synthetic. A telegraph wave was synthesized and differentiated to
produce a reflectivity sequence. Gaussian noise was then added, and this
provided the input to the VA. Note the absence of random walks 1in the
computed impedance. The errors made using other techniques are con-
trasted with the VA in Figure 3.10.
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Figure 3.6. A 100-point running average of the original reflec-
tivity series was subtracted from it to give a simulated field record-
ing. Shown are the original impedance {(top) and the "filtered" 1impedance

{bottom).
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Figure 3.7. The mean square velocity curve (thick curve) super-
posed on the original reflectivity series. The 7 picks shown were used
by the VA to restore the low-frequency component.
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Figure 3.8. The restored impedance (bottom) contrasted with the
original impedance (top). Agreement 1s generally good.

3.5. Conclusion

A few indications of the potential use of the stochastic model
presented in Chapter I have been developed 1in this chapter. A number of
areas are open to further research: (1) Only one well log was used in
the deglitching application. If a suite of logs were available, the
various logs could be analyzed together. This 1s a case of having vector
vs. scalar observations. {(2) An observation made by‘E. Eisner (personal
communication) was that a major problem in well logs 1is cycle skipping.
He suggested that a more reasonable noise function (Figure 3.1) would
contain two peaks, thus incorporating the possibility of correcting for
cycle skips in the VA. (3) Merging the mean square velocity curve into
the VA required a sub-optimal scheme. We adopted the present one because
of dts intuitive appeal. Other more theoreticaily appealing schemes

exist and these need to be explored.

A model’s performance can be analyzed only after extensive tests on
real data have been made. Ultimately, this 1s our goal. In this chapter,
we have simply introduced the concepts of the Viterbi Algorithm as

applied to some geophysical problems.
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Figure 3.9. (a) A telegraph wave synthesized using M=1%5, \=0.9,
and a wuniform probability mass function. (b) Differential of 9a. (c)
Adding 10X noise to 9b. (d) The reflectivity in 9c¢ was input to the VA
and 9d resulted. Two knots were specified - the first and last point of
the 1og - in the VA. Geologically, +this corresponds to knowing the
impedance at the surface and at the basement.
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Figure 3.10. (a) The reflectivity in 9¢ was quantized idinto 15
states and subtracted from 9b to give the left-hand plot. The vertical
scale is exaggerated. Integrating the left-hand plot gave the figure on
the right. (b) The ZNL of the previous chapter was used to estimate
reflection coefficients in 3¢ and these were subtracted from 9b to give
the LHS of 10b. (c) Differentiating 9d and subtracting from 9b gave this
result.
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