Chapter Il
A Theory for Iterative Source

Waveform Deconvolution

A type of iterative deconvolution that extracts the source waveform
and reflectivity from a seismogram through the use of zeroc memory, non-
linear estimators of reflection coefficient amplitude 1is developed iin
this chapter. Estimators of this type are implicit in iterative deconvo-
lution techniques that optimize norm ratios. Wiggins (1977) pioneered
the development of these algorithms, and Gray (1979) summarized current

alternatives.

Here, we present a theory for iterative deconvolution that {is based
upon the specification of a stochastic model describing reflectivity.
Such a model can be developed using the stochastic model of impedance
discussed in the last chapter. The resulting parametric algorithm decon-
volves the seismogram by forcing a filtered version of the seismogram
to resemble an estimated reflection coefficient sequence. This latter
time series is itself obtained from the filtered seismogram, and so a
degree of 1iteration 1s required. One advantage of using a parametric
algorithm is that, besides the deconvolution, optimal estimates of
reflection coefficient amplitude, free of convolutional noise, are

obtained.

We ignore the dependence between reflection coefficients. inherent
in the Markov model, in this particular application. The next chapter
includes such dependence when formulating a model for seismogram dnver-
sion. The 1intent of the present chapter 1s to provide an intuitive,
parametric theory for iterative deconvolution. We start by reviewing the

objective of iterative deconvolution.

2.1. Iterative Deconvolution - The Objective

The object of iterative deconvolution algorithms is to compute an
inverse filter, denoted by f:+1. such that the convolution of F:+1 with
the data (or seismogram yt) results in the complete or partial removal
of the forward wavelet bt' where superscripts refer to iteration.
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Assuming that an estimate of the reflection coefficient sequence exists,
denoted by F;. the following set of overdetermined equations must be

solved for f:+ :

k+1 ~ =~k
(y =« )t rt (2.1)
The least squares solution to equation (2.1) gives the familiar Toeplitz

system of equations:
f = r wy (2.2)

R = co-variance matrix of y
Yy

ww = crosscorrelation symbol

Equation (2.2) is valid for every channel of data, and if f:+1 is
assumed channel-independent, we merely add together the co-variance
matrices and crosscorrelation vectors and solve far the filter. A11 the
current techniques of iterative deconvolution differ in their approach
to obtaining the estimated reflection sequence F:. Our approach 1is to
compute ;: so as to minimize a function of the error Py " F:, where rt
is the "true" reflection sequence. Both square and absolute value func-

tions are considered.

2.2. The Deconvolution Sequence

In order to get F:. a time series which contain re must be avail-
able. Of course, this time series contains noise and hence only an esti-
mate Ft can be obtained. The deconvolution sequence, denoted by x:, and
obtained from yt via

k A k
xt 8 (y & f )t (2.3)

is such & time series. Equation (2.3) can be rewritten in a way that

makes apparent the idea that xt contains et

x: = (y % F)t + [y * (fk - F)]t
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X = r, +n (2.4)

Equation (2.4) sets the stage for discussing optimal estimates of
reflectivity.

2.3. Optimal Reflection Coefficient Estimators

Given a deconvolution, x = (xl,xz.....xN). the optimal teast
squares estimate of the reflection coefficient rs is the expected value
of r given x. Kailath (1876) gives a nice derivation of the result,
and 1t 1s reproduced 1in Appendix A. [Throughout this section, we often-
refer to x as the vector of observations. In point of fact they are fil-
tered observations, but from an estimation viewpoint, such a qualifica-
tion is unnecessary.] For instance, if two Random Variables (RVs) R1 and
X (recall that upper case letters refer to RVs and lower case to their
values) are known to be related and only one is observed, e.g. X = 5,
then an intuitive estimate of Rj . call it Fi' is just the expected
value of R1 given the observation E(R1|X=5). In our particular case,
the situation is slightly more general in that a vector of observations
x are available to estimate r

i :

(2.5)
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In equation (2.5), the subscript "2" distinguishes the least sguares {or
L-2) estimator from subsequent estimators. Also, the statement X = x is
equivalent to (Xl.xz,...,XN) = (xl.xz,...,xN), 1.e. X 1s a random vector
which itself is a member of the process {Xt}.

An alternative estimator to the least squares one 1is that obtained
using a least absolute value error function. The optimal least absolute

value estimate of ry is the conditional median of r, given x. Mathemati-

-~

cally, this means solving the following equation for 1Tt
1)
J f (r.Ix)dr. = 0.5 (2.86)
i R
- 00 R.'IZ(_
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The function le(l) refers to the least absolute or L-1 estimator. The

derivation of equation (2.6) is found in Van Trees (1968), p. 56.

From equations (2.5) and (2.6), 1t 1s evident that to determine
2F1(§) and 1F1L1), we need to solve these formidable expressions,
dealing simultaneously with all the x1's (i.e. x). This is difficult in
the general case 1in which noise and signal are neither Gaussian nor
white nor even independent. The goal of the next section will be to
introduce reasonable approximations that will allow the determination of

the estimators.

2.4. A Probabilistic Model fFor Deconvolutions

If the joint pdf for R and N, and therefore their correlation (or
lack of), 1s specified, then the pdf for X 1s completely described.

First, we construct a model for E.

Consider the vector of reflection coefficdients r and associated RVs
R. Assume each RV in R 1s independent and identically distributed. The
RVs 1independence means that the joint pdf for R can be written in terms
of each component pdf, and their identical distribution means each com-

ponent pdf is identical:

R,,R *** LR 1°°2

f(r) @& f (roor., <o 1)
R 1’72

le(Pl)fRZ(PZ) e fRN(rN). independent

I fR(ri)' identically distributed (2.7a)
;

The stochastic model for impedance developed in the 1last chapter sug-

gests the following pdf to describe each RV in R:

2

Fo(r) A(r) + (1-x)s(¢§,r ) (2.7b)

2

G(cf,r Gaussian pdf of zero mean and variance cﬁ

- 29 -



The parameter X\ represents the blockiness of the impedance 1log or,
equivalently, sets the mean waiting time for reflections at 1/{1-X). In
summary, we propose a non-Gaussian, independent model for reflection

coefficients.

A description of the noise and its correlation with R 1s motivated

by considering equation (2.4):

ko k_ ]
X, = fy o+ [y * (f -f) t

Substituting (r*b)t for Yy where b {is the actual bubble (unknown) 1n
the above equation, gives
k

X
t

rt + (r % V*)t
Vt 4 [b * (fk’f)]t

The waveform Vt 1s the residual wavelet present in the deconvolution at

the k-th 1teration. We 1magine that Vt is a long and oscillatory

waveform which produces a noisy output when convolved with r

t:
k k
xt = rt + nt (2.8a)
k -
e 8 (rx V), - z A | (2.8b)

Some properties of the noise c¢an be derived from equation (2.8b).

Again, dropping superscripts, we have

ENN, = E(? RV, i RV ) (2.9)

But from equation (2.7), R is white, hence
ER.R, = (1-A)e28
j r i3

13

Substituting this expression in (2.9) gives
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2
N s (e 299

Since VQ is long and oscillatory, the sum in the above equation contri-

butes a non-zero value only when i=3:
EN_N = o8, (2.10)

e & (1-\)e? TV
N r ) 1
From equation (2.10), we conclude that the noise is white. If in addi-

tion its pdf is taken as Gaussian, the result is a white, Gaussian model

for the noise.

A1l that remains i1s to consider the correlation between R and N.
These two sequences are certainly correlated [equation (2.8b)], but when
compared to the magnitude of the noise variance, the «correlation s

negligible. To understand this point, consider the autocorrelation of X:

EX_'Xj

E(R1 + N1)(Rj + Nj)

[(l-k)cﬁ + c;]a + ERiNj + N.R

iRy (2.11)

i

The cross-terms can be calculated using equation (2.8b):

2
RN, = (1-\)e Y,

;
Again, using the assumption that VQ is long and oscillatory, we conclude
that G: >> ER1NJ. From equation (2.11) this means that EX? >> EX1XJ. 3
®i, or in effect that X is white. This suggests that R and N can be
taken to be 1independent (the relation uncorrelated # independent 1s

ignored). Hence we have the model

X. = R, + N, (2.12a)
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The pdf for each RV in X is the convolution of the pdfs for R and N.
Using the fact that N is Gaussianly distributed,

F(n) = G(c:.nz) (2.12b)

we have

fx(x) = fN( ) % fR( )
fx(x) = kG(vﬁ.xz) + (l—X)G(cz.xz) {2.12c)
DI

The pdf in equation (2.12c) will be referred to as a normal mix-
ture. Such a model has been used to characterize impulsive noise, super-

posed in background noise, of telephone circuits (Miller and Thomas,
1976).

In summary, the probabilistic model for the deconvolutions is given
by equatians (2.7b) and (2.12). Using this model, expressions far Zri

and can be derived. Because of the approximation involved 1in deriv-

r
ing :h: model, these expressions give sub-optimal estimators. During
the latter stages of iteration (i.e. the algorithm is approaching con-
vergence), the model is applicable since R and N are independent and N
1s Gaussianly distributed. In the early stages of iteration, however, R
and N are heavily correlated and N is more uniform than Gaussian. This
point should be kept in mind when selecting parameters for the algo-
rithm.

The next section gives the derivation of the sub-optimal estima-

tors.

2.5. Sub-Optimal Estimators

The 1independence of X means that 2;1 and 1F1 will depend only on

Xy Hence equation (2.5) becomes
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~ _ .
AL Ir, Rilxi(r1|x1)dr1
As & notational convenience, the subscript 1 is henceforth dropped and
2r‘1(x1) becomes rz(x).

Rewriting the above equation in terms of the joint density between

R and N gives

N J'rfR(r)fN(x—r)dr
rplx) = FL0x)

{2.13)

It is a simple matter to calculate the integral in equation (2.13) using

the model of the previous section, the result being

rz(x) = xhz(x) {(2.14)
-1
2
¢ 2
r X 1 1
hy(x) = —q1+ ¢ exp 7 -3
v v v
N
A (]
¢ (1-XVe,,

The estimator 1s composed of two parts, a linear term x weighted by a
gain function hz(x). The gain function has two intuitively appealing
properties: (i) hz(x)ZO and (i1) hz(lxlww) = cf/cz. The first means that
given a sample x, composed of reflectivity and noise, independent and
both zero mean, the estimates of the amplitude of the reflection coeffi-
cients have the same sign as x. The second property means the asymptotic

behavior of the estimator is linear.

The derivation of the least absolute value estimator rl(x) is  con-
siderably more detailed than the least squares estimator. The calcula-
tion 1s presented in Appendix B, where 1t will be evident that a c¢losed
form solution 1s not possible. For a restricted range of parameters,

however, Fl(x) can be approximated by a threshold device:
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Fl(x) x hy(x) (2.15)

hl(x) = 0, |x|<xc

2
‘r‘
—E’ |x|2xc
[ 2

s [ Nz
XC - \IZGN 'Inm

In this case, the gain function h1 is a step function. Note that the

asymptotes of both ;l(x) and Fz(x) are identical.

The implementation of either equation (2.14) or (2.15) requires the
specification of three parameters (cf.cﬁ,k). The next section deals with

their selection.

2.6. Parameter Selection and Convergence

If the ZNLs of the last section are implemented, each iteration
tries +to better identify the reflection coefficients and to then remove
the forward wavelet with a proper inverse filtering. The objective of
this section 1s to justify the former statement with regard to parameter

selection. We start the analysis by introducing some necessary notation.

Previously, it was assumed that the parameters (af,c:,k) describing
the deconvolution are known & priori. Actually, they are unknown, and a
set denoted by (;f,;:.i) must be chosen for use in the algorithm. One
constraint placed on their selection 1is that the algorithm be data-
dependent. Equation (2.12) provides the necessary condition for this
constraint, for it relates the vartance of Xk to the algorithm parame-

ters:
(e = aR)Ed) « D

or
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. (o))
(eayk = —% (2.16)
(1-A)S™ + 1
;2
gk A r
(s2)*
N

As a consequence of equation (2.16), only two parameters must be

selected- (gk,i)- with the data fixing the remaining parameter.

Say (§k,X) are chosen constant, independent of deconvolution and
iteration;: how much penalty is incurred for mismatching the true parame-
ters with these constants? To answer this question, a penalty function

must be defined. The mean square error (MSE), defined by
(Mseyk 8 E[F(xk) - R]

1s a good choice because it is 1inversely proportional to the f{teration

gain, 16, defined as

(i)
(‘:)k+1

(1)t a (2.17)

To prove the proportionality, first recall the definition of n, from
equation (2.4):

K+l [ K+l ]
n = |y % (f f) ¢
= okl
t t
Hence,
13 S IE S R S
N t "N t t

Equating the time averages with ensemble averages in the above equation

gives the equivalent expression.
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02
N

k+1

) . E(Xk+1

( 2

- R) (2.18)
If the system of equations 1in equation (2.1) wasn’t over-determined

(i.e. if we had one channel of data and an infinite length filter), then

Xk+1 = F(Xk) and the term on the RHS of equation (2.18) would be the
mean square error &t the k-th jiteration. The over-determination, how-
ever, reduces the variance of the uncorrelated noise 1in Xk+1 with
respect to that present in F(xk). Hence the inequality:

(v:)k+l < E[F(xk) - R]2 - (usp)X (2.19)

The MSE can be factored into two parts (see Appendix C):
mse)* = pskEEALT) (o)

where P is mnemonic for penalty function. With this substitution, equa-

tion (2.19) becomes

(‘:)k+1
2
N

< P
(~rk

Comparing the above equation with equation (2.17) gives the result

1

k+1
(1a6) 2 m

(2.20)

pes®, 550 5%)

Note that the penalty function provides only a lower bound for the total
tteration gain, which 1s composed of two parts: (1) the gain derived

from P, and (2) the over-determination gain.

Our objective is to select (S,\) by "minimizing” P over a range of
S and X. This is difficult in the general case when S and A\ vary over
their full range, 0 < $ < wand 0 S X £ 1. The frequency of reflection
coefficients, however, rarely exceeds 1 per 5 time units, and for this
reason A 1s restricted to the range 0.8 £ X < 0.98. The upper limit was
arbitrarily set at 1 reflection in 50 time units. The ratio of reflec-

tion to noise variance, S, can be as low as 1 at the first iteration,
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but rapidly 1ncreases to values of 15-20 as iteration proceeds, hence
1 £3 £ 20. Using F(x) = ;2(x), Figure 2.1 shows the surface P(s,E;x,i)
[a function of (§.i) ] for four combinations of (S,\). See Appendix C
for details of the computation. Note that the minimal value of P occurs
when (§,i) = ($,\), as expected. The values of P on all plots in Figure
2.1 are generally less that 1.0, regardiess of (§.i), implying an itera-
tion gain of at 1least 1.0. The exception is when S = 20. 1In other
words, the surfaces P(S.g;k.i) are moderately flat for a wide range of
(E,X) and an estimation scheme to ensure that (g,X) % (S$,\) 1s not

required.

Different approaches are available for selection of the "best" pair
of (E,X). Our approach, empirical in nature, was to select
(§.i) = (5.0,0.9) on the basis of deconvolving synthetic data using
three criteria: (1) quality of deconvolution; {(2) rapid rate of conver-
gence; and (3) maximum penalty =.93 for 1 <X £ 20 and 0.8 <)\ < 0.98.
The maximum penalty occurred at (S,\) = (20.,0.8). In Figure 2.2a, Fz(x)

has been plotted using various combinations of (§.i).

The effect of choosing s independent of iteration is that as 1tera-
tion proceeds, S increases and surpasses S. Depending on the combination
(S.X), a point is reached when the iteration gain becomes < 1. The next
iteration results in a reduction in S but now the penalty < 1 and algo-
rithm oscillation begins. The value of S at which oscillation 1s ini-
tiated, call it smax' is quite high generally:- and represents the
signal/noise ratio the algorithm is capable of achieving. One could then
change the pair of constants (S,X) 1in order to achieve a better
signal/noise ratio. The real power of the algorithm, however, 1s exhi-
bited during the first few iterations, when deconvolutions of low § are
correctly "transformed" into deconvolutions of higher S. Our <choice of

(g,i) is made to guarantee that we move correctly out of low S regions.

The MSE is a measure of the iteration gain of any ZNL and the same
analysis was used 1n selecting (§,X) = (5.0,0.9) for the absolute value
non-linearity. In this case the maximum penalty occurred at
(S.x) = (20.,0.8) and equaled 0.35. Figure 2.2 also includes plots of

?l(x) for various parameter sets.
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with the actual

parameters (S,A) is illustrated by contouring the mean square error sur-
face for the L-2 estimator. Here (S,A) = (1.,0.9).

(B),(C),{D): Corresponding surfaces as S increases through

20.
when (S,A) = (S,\).
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(A),(B): The L-2 estimator plotted for X and S fixed. In (A), s ranges
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0.1,.2,.5,.8,.9, and 0.99. Both abscissa and ordinate are normalized by
the variance L

(C),(D): Corresponding plots for the L-1 estimator.
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In summary, based on the concept of dteration gain, the set of
algorithm parameters (gk.i) = (5.0,0.9) can be used at each iteration,
independent of the deconvolution, and convergence will be attained. Our
analysis, however, assumed that the squared error had zero variance and
could be completely characterized by its mean {i.e. assumed an 1infinite
number of samples). Convergence of a particular dataset is certainly
enhanced, therefore, when a large amount of independent data constitutes

the dataset.

2.7. Bussgang Convergence

The convergence properties discussed in the 1last section have
tacitly assumed that the only convergent sequence 1is the original
reflection sequence. As a preliminary to discussing this assumption, the
family of processes to which any {1terative algorithm utilizing a ZNL

converges is now defined.

Gray (1379) discovered that the variable norm deconvolution algo-
rithm converged to sequences that were Bussgang [see Barrett and Lampard
(1955)]. This is true of any iterative algorithm utilizing a ZNL. To
show this, begin by writing equation (2.2) in the frequency domain (tem-
porarily, upper case letters refer to frequency domain variables and not
RVs):

yeektl o 7k

In the above equation, Z refers to any ZNL of which Fl and Fz are two

particular cases. If Fk+1 is proportional to Fk, the algorithm has con-

verged:
A L

Muitiplying the above through by Fk gives

—~
x
x1

[~

=

(2.21)

-~
~N
>x1

S

~
1}
-]
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Equating (X)_()k with the power spectral density of the process {Xt},
equation (2.21) is the definition for {X:} to be Bussgang. Once the pro-
cess {X:} has converged to a Bussgang process, any 2ZNL can be used
without affecting the result. Of course {X:} could converge to a number
of different Bussgang processes, depending on the particular ZNL used. A
similar situation occurs when a2 function 1is being optimized. There, the
possibility of the function having many local minimum {(maximum) points
is analogous, in the present context, to the process {X:} converging to

different Bussgang processes.

Next, it will be demonstrated that an independent, non-Gaussian
sequence convolved with a wavelet is not Bussgang. Begin by hypothesiz-
ing that reflection coefficients are independent and are described by a
normal mixture pdf. The data results from the convolution of a forward
wavelet with the reflection sequence. If after iterating k times, there
is a residual wavelet of the form (1,a) present in Xk, the following

theorem, proved 1n Appendix D, shows that Xk 1s not Bussgang:

Theorem: If a stationary, independent process, characterized by a
normal mixture pdf, 1s d4nput 1nto a two-term filter, the new

sequence is not Bussgang.

Another theorem, also proved 1in Appendix D, deals with arbitrary non-

Gaussian pdfs:

Theorem: An independent stochastic process convolved with a delta-
11ke wavelet is Bussgang if and only 1f the original process was

Gaussian.

Note that if the observation sequence becomes Gaussian (not necessarily
independent), the algorithm has reached a convergent point since any

Gaussian process is necessarily Bussgang.

Summarizing the results, we have that (1) the equiiibrium points of
iterative deconvolution algorithms are Bussgang processes, (2) an
independent non-Gaussian sequence convolved with & wavelet 1is not
Bussgang, and 3) any Gaussian process fis Bussgang. Therefore, iterative

deconvolution algorithms have two equilibrium points - either {X:} is
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Gaussian or it is independent. The ZNL used in the algorithm controls
the direction of convergence taken. In addition, since the algorithm has
access to only a sample of {X:}. the ZNL also affects the rate of con-

vergence, or equivalently, the efficiency of the algorithm.

Actually, random telegraph waves are also Bussgang and are there-
fore equilibrium points of tterative deconvolution algorithms. One might
conclude from this that a possible output of dterative deconvolution
algorithms would be integrated reflectivity or impedance sequences. We
conjecture that such sequences, although they are equilibrium points,
are not stable. To test this conjecture, an impedance function was
input to the algorithm. After iterating 15 times, a differentiated ver-

sion was observed as output, thus supporting the conjecture.

The final two sections of the paper present the results of applying
the algorithm to synthetic and real data.

2.8. Synthetic Data

Using the model in equation (2.7b), reflectivity seguences were
synthesized. The density of reflections varies according to the value of
A used. The series of Figures 2.3-2.5 shows the effect of increasing the
density of reflections from 1 in 20 points {A=0.35) to 1 in 10 points
(A=0.90), and finally to 1 in 7 points (A=0.85). In all cases, the
reflectivity sequence r, was 100 points long, the bubble bt=23 points,
and the resulting seismograms were padded with zeros to create a 128-
point trace. Five data channels were generated. The inverse filter f:

had a length of 201 points, and the starting filter Ft = §(t-100).

The top plots (a) in each figure shows the progress of the first
channel as d{teration proceeds. Along with the decanvolution x:, the
inverse filter F:, the crosscorrelation of data with estimated reflec-
tion sequence ymF:, and the estimated reflection sequence are plotted.
The bottom plot (b) summarizes the final result by showing the original

sequence rt, the data yt. and the deconvolved result xi.

Convergence in a1l three cases is obtained after 5 iterations. As

the reflection density increases, the algorithm fails to distinguish the
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small reflection coefficients from convolutional noise. We have per-
formed the same experiments after adding Gaussian and uniform noise to
the data yt, and the algorithm 1s stable, with an expected degradation

in the deconvolved results.

These synthetics are presented to demonstrate that selecting
(gk.i) = (5.0,0.9) 1independent of the actual data gives rapid conver-
gence and acceptable deconvolutions. It should be emphasized that the
estimated reflection sequence is not the deconvolved result. The latter

can be obtained only by filtering the data yt.

2.9. Real Data

The first real data case consists of 16 channels of a common shot
gather (CSG) recorded using an agua-pulse source. This same dataset has
been used extensively by Gray (1979). Figure 2.6a shows the gather,
along with the average amplitude spectrum and autocorrelation function.
Each channel is 512 points long. Figures 2.6b and 2.6¢c show the deconvo-
lution wusing both a prediction-type algorithm (i.e. minimum-phase
wavelet) and six iterations of our algorithm. Note that the correlation
function gives a misleading impression of the quality of deconvolution.
In our judgment, Figure 2.6c 1s cleaner that Figure 2.6b, but the caorre-
lation function would suggest otherwise. The inverse filter was 401
points long in our deconvolution. This raises the question of why the
sea-floor multiple 1s not removed by the filter. The answer: since the
separation of seafloor primary and multiple changes as the offset

changes, the algorithm treats multiples as primaries.

The last example 1s a CSG supplied by Digicon. The gather, Figure
2.7a, consists of 48 channels, each 1000 points long. The source was a
maxi-pulse bubble, which was field-recorded and is shown on channels 25
and 48. Spiking the recorded bubble by frequency domain division
resulted in Figure 2.7b. Applying a predictive-type algorithm resulted
in Figure 2.7c and six iterations of our algorithm gave Figure 2.7d. The
difference in the last two results is indicative of the role the phase
of the wavelet has in the deconvelution. In the case of the aqua-pulse

bubble, a minimum-phase approximation 1is actually quite good, and the
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differences between Figures 2.6b and 2.6¢c are negligible. In the present
case, however, there 1s no comparison between the two, and the addi-
tional cost of our algorithm is justified. Finally, as an experiment, we .
performed predictive deconvolution on Figure 2.7d to give Figure 2.7e.
Even though the spectrum is whitened, the process has degraded +the
result by inserting erroneous events and collapsing valid pairs of
events to a spike. Figure 2.8 is a summary of the power spectrums and

correlation functions of Figures 2.7a-2.7e.

2.10. Conclusions

The theory proposed in this paper gives an intuitive feeling for
what d{terative deconvolution algorithms utilizing a ZNL can accomplish.
Our approach is parametric, in the sense +that a probabilistic model
describing reflection coefficients must be prescribed. The particular
model used was based on earlier work that modeled impedance as a Markov
chain and treated reflectivity as a derived process (i.e. differential
of logarithm of impedance). Based on this model, two classes of ZNLs
were derived: (1) those obtained by minimizing a squared error function
and (2) those obtained by minimizing an absolute value error function.
In order to select parameters for the ZNLs, the term penalty function
and iteration gain were defined. We demonstrated that for a wide range
of observations, only one set of parameters need be used in the algo-
rithm. The choice of parameters was made under the constraint that the

iteration gain be greater that one.

An old result, that the convergent points of diterative deconvelu-
tion algorithms are Bussgang processes, can be reinterpreted using the
theory. Under the hypothesis that reflection sequences are independent
and non-Gaussian, the algorithm converges to either the original reflec-
tion sequence or to a Gaussian sequence. The direction of convergence is

determined solely from the ZNL.

In summary, by utilizing the non-Gaussianness of a particular time
series, 1t 1s possible to extract useful information. This estimation
can be obtained, however, only by using non-linear estimators. In our

case, the estimators were particulariy simple because we assumed
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predictive deconvolution, the result is superior.
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independent refliection coefficients.
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