275

A COMPLEX TRIDIAGONAL MATRIX SOLVER

Jeff Thorson

The heart of many of our wave-equation migration schemes is the
solution of a tridiagonal system of equations. Since this routine may lie
inside two or more nested program loops, it would be worthwhile to utilize

the speed of an array processor in solving it.

We now have a Floating Point Systems AP-120B array processor with

512 words of standard program memory and 8,000 words of data memory. A

subroutine to solve the most general tridiagonal system -- with complex
elements -- has been written in AP assembly language and is included in this
report.

Together with a vector function chaining option which allows several
routines to be linked together inside the array processor, it is possible
to transfer a large portion of a migration program from the host to the AP,

despite the small size of our program memory.

The subroutine works on the Floating Point Systems standard memory
option; it has not been tested on AP-120B fast memory. All relevant

documentation is in the program listing.

276

Yaesedtdrudidn CTRI = COMPLEX TRIDIAGONAL MATRIX SOLVE 33333358 38 #3303 34 8
$title ctri
$entry ctri, 5
fext div

"Abstract:

This subroutine solves a general complex tridiagonal system
of the following form:

" L b{(O) a(0) 3L £(0) 1 £ dCO)Y 3]
" L c(1) b(1) a(l) J L ¢£¢1) 1 L d(1) 1
" L c(2) b(2) a(2) 30 £(2) 1 L d(2) 1
" L c(3) I . J = []
" £ . . ain—2) 1 L .] L .]
" L ci{n—1) b(n—-1) 13 [t{n-1)] fdi{n—-1)1
"Statistics:

" AP~120B with standard memory
" PS — 56 instructions
" Speed — 10.1 us/complex point
" Author — J. R. Therson July 1978
Subroutines used:
div

"Scratch:

" sp(0-7, 13—-15)

" dpx(—-4 to 3)

" dpy(—-4 to 3)

dpa unchanged

tm — used

md ~ answer is overwritten onto input vectors:
e(i) onto c(i)

" £(i) onto b(i+1)

" t(i) onto d(i)

" c(0) and a{n~1) are not used.

" call ctri(a,b,c,d,n)
(or) st ctri S—-PAD
base address of vector
base address of vector
base address of vector
base address of vector
size of system

SJganoh
LI I I |

an oW
LU= 0O

"Algorithm:
a b,c.,d,e,f.g,h.t are complex.
g9 b(0)

" h d{0)

" do forward loop, k = 0O,n—-1

= g{real)##2 + g(imag)##2

= 1/x (jysr div)

=x*g

k) = g #* a(k)

X
X
9
e

(2]

Notes:

277

F(k) = g # h
g = b(k+1) - e(k)#c(k+1)
h = dik+1) — £(k)#c(k+1)

continue

tin—-1) = £(n-1)

do reverse loop, k = n—-2.1
t(k) = #(k) — e(k)®t(k+1)
continue

end

See Claerbout, FGDP, pp. 188-189 for derivation.
Here e(k) is opposite in sign with the e(k) in Claerbout.
Treatment of boundary conditions:

c(0) and a({n—1) are not used in the algorithm and

can be any value. Ad Jjust a(0), b{0),d(0), c(n—-1),

b(n-1) and d{(n~-1) to set the desired b.c. -—-—

1) e(0)=a(0)/b(0)

2) £(0)=d(0)/b(0)

3) tin-1)={din-1)-Ff(n-2)%c(n—-1))/(b{n—-1)-e(n-2)%c(n-1))
For many applications vector c equals vector a. t may overlay
a in the AP memory ~— i.e.,

call apputi(c,aptr.n, 2)

call ctri(aptr,bptr,aptr,dptr,n) will work.

CUWUNDPUN-O

n
-
ot
u’
LI NN 1 O

Data pad mnemonics:

DPX

h = -4 "real part of h

hi = -3 “imag part of h

ar = -2 "etc.

ai = -1

tr = 0 “£r,ti are used in reverse loop,
ti = 1 "otherwise DPX 0,1 are scratch
cr = 2

ci = 3

DPY

i
i
b

AN

278

ctri:

error:

forward:

in:

gi = -3
er = -2
ei = -1
fr = 2
fi = 3

mov bptr.bptr; setma
ldspi 7; db='one
mov n, count;

incma
mov 7,7 settma;
dpy(gr)<md

mov dptr,dptr; setma;
fmul dpyf{gr),dpylgr)
clr xinc;
dpy(gil)<md;
fmul
sub n, xinc;
fmul dpyf(gi).dpylgi);
dpy(QI<tm;
incma
bge errori
tfadd fm, zero;
dpx(hr)<md;
fmul
mav aptr,aptr; setma;
fadd;
fmul
ldspi xinc; db=2;
fadd £m, fa
fadd;
dpx(hi)<md
dpx(ar)<md;
br in

clr n;i return

The preliminaries are done:

"fetch H(O)TYT

“store address of 1.0 in sp 7
"set counter to n

“"fetch bH(O)i

“"fetch 1.0 out of table memory
“b(O)r is rTeady, gr = b(OMT
"fetch d(O)r

"form gr##2

"to test n

"b{0)i is ready, gi = b(Q)i
“push.

"negate n — see next instruction
“form gi#x2

"place 1.0 into dpy

“fetch d(0)i

"branch to errvor if n <= 0
"gr##2 goes into the adder
*d{(O)r is ready:, hr = d(0)r
"push.

"fetch a(O)r

"push out gr#x®2

"push out gi#x2

"xinc equals 2

"form gr##2 + ginx2

"push.

*d(0)i is ready, hi d(0)i
*a(0)r is ready, ar a(0)r
"branch into forward loop

i H

"possible errors:

“1I. n <=0

"2. divide by zero in div

"3. floating point overflow.

"n is reset to zero in each case.

gr.gi,hr,hi, ar have been placed

in the data pad, gr##2 + gi##2 rests in the adder output buffer,
and 1.0 is in dpy(0) for the use of subroutine div.
Pseudo—counter k = 0 (used in the comments).

middpyleild); incma;
tadd

dpx (0)<£fa;
Jesr div
inc# aptr; setma;
fmul dpx(0),dpyigr)
bfpe error;

"write e{k—-1)i into memory.
*push. This program step has
"been moved from the bottom of
"the loop to allow branch begq
"below to reach to ‘neutral’.
"position gr##2 + gisx2,

"and divide.

*fetch al{k)i

"gr = division result ¥ gr
"goto error if divisor was zero

mov 7,7; settma;
fmul dpx(0),dpy(gi)
mov bptr.bptr;
mi<dpy(fr);
fmul
fmul fm,dpx(ar);
dpx(ail)<md;
dpy(gri<+fm
mi<dpy{(fil); incma;
fmul #m,dpx{(ar);
dpy(gil)<fm
fmul dpx(ai),dpy(gi)
add xinc,cptr; setma;
fadd fm, zero;
fmul dpx(ai).dpy(gr)
fsubr #m, zero;
fmul dpx<(hr).dpyigr)
dec count;
fadd £m, fai
fmul dpx(hi),dpyigr);
incma
beq neutral;
fadd fm, fa;
fmul dpx{(hi),dpy(gi);
dpx{cr)<imd
add xinc,bptri
fadd fm. zero;
fmul dpx(hri,dpyigi);
dpylerl<fa
fadd fm, zeroi
fmul dpx(cr),dpyf{er):
dpx(ci)<md;
dpy(eil)<fa
fadd fm, fa;
fmul dpx(cr),dpyiei);
incma
fsubr #m, fai
fmul dpx(ci),dpy(ei)
add xinc.,dptri setma;
fsubr fm, md;
fmul dpx{(ci),dpy(er);
dpy(fr)<fa
fsubr #m, md;
fmul dpx{crl), dpyl{fr);
dpy(fil)<fa
fadd +m, fa;
fmul dpx(cr),dpyl{fi);
incma
fsubr #m, fai
fmul dpx{(ci),dpy(#i)
add xinc,aptr; setma;
fsubr fm, mdi
fmul dpx{(ci),dpy{fr);
dpy(gri<fa
fsubr fm.,md;
fmul dpy(gr),dpylgr);

setmai

setma;

"fetch 1.0 again from table memory

279

“gi = division result %* gi
"set spfn to point to b(k)r,
"write f#(k—-1)r onto b(k)r

“push.

gr # ar

"a(k)i is ready, ai =
“store gr in data pad y

alk)i

"write f£(k—1)i into b(k)i

“gi # ar

"store gi in data pad y
“ai # gi

"fetch clk+l)r
"ar#gr into adder
"ai # gr

“—ar#gi into adder
"hr # gr
"decrement counter
“"ai#gi + ar#gr

*hi # gr

"fetch c(k+1)i

“branch aut if count =
"ai#gr — ar#gi
"hi # gi

"c{k+1)r is ready, cr =
“fetch b{k+1)T

"hr#gr into adder

hr # gi

"e{klr = ar#gr + ai#gi
"hi#gr into adder

Yer # er

“ci = c(k+1)1

"e(k)i = ai#¥gr - ar¥gi
"hi®#gi + hr*gr

"er ¥ el

“fetch b{k+1)1i

“—hr#gi + hixgr

"ci #® ei

“fetch d{k+1)r

“—er#er + b(k+1)yp

"ci *® er

“"store f(k)r in dpy
“"—cr#ei + b(k+1}i

"er #® fr

"store £(k)i in dpy
"ci#eli -~ cr¥er + br
ey # i

“"fotch d(k+1)i
"-ci#er — cr¥ei + bi
"ogi # £i

"fetch a(k+idr
"—cr¥fr + d(k+i)dr
"ci ® fr

"store new gr in dpy
U—cr#fi + d(k+1)i
“square gr

0

c{k+i)r

280

neutral:

Teverse:

dpy{(gi)<fa

fadd *m, fa;
fmul dpy(gi),dpylgi);
dpy(QI)<tm

fsubr fm, fa;
fmul;
dpx(ari<md

sub¥ xinc,cptr;
mi<dpy(er); setma;
fadd;
fmul;
dpx(hr)<+fa;
dpy(1)<fm

fadd #m, dpy(1);
dpx(hi)<fa;

"store new gi in dpy

Yei#fi - crefr + dr

"square gi

"reload 1.0 into dpy — for div
HY—cifr — cr#fi + di

“push,

"alk+1)r is ready,
“set spfn to cl{k)r,
"and write e(k)r over c{k)r
"push adder,

"push multiplier,

“store new hr in dpx
"temporary place for gr##2
Hgien2 + gres2

"store new hi in dpx

ar = a(k+1l)r

Jmp #arward "loop back. Alsa k = k+1
Status:
n writes of fi, fr have been made to memory:
(0,0 £(O)r, i £{n-2)r,1) overlay
¢ b(OITr, i b(i)r,1i b¢(n—1)r,1i)
n—1 writes of ei,er have been made:
(e(O)r, 1 e(ldr, i e{n-2)r.,1)} overlay
(c(O)r, 1 c(idvr, i cin-2)r,1i)

Note #{(n-2)r,i and e(n-2)r,1i are still in DPY.

f{n-1)r,i are in the pipe, =
fptr =

eptr = cptr ! f ¢l nr
tptr = dptr ’ f din—-1)r
sub xinc,eptr

add xinc, tptr;

fadd #m, zera;

fmul dpx(hrl),dpylgi)
sub xinc,eptr;

fadd fm, zero;

fmul

inc# fptr; setma;
tfadd #m, fa;
fmul

mov n, count;
fsubr +m, fa
Reverse loop: pseudo—~counter
sub xinc, tptr;
mi<fa; setma;
dpx{(tr)<fa;
fadd
dpy{fi)<md
mi<fa; incmai
dpx(ti)<+ta
fmul dpx{(tr),dpy(er)
sub xinc,eptr; setma;
fmul dpx(ti),dpy(er)
dec count;

k

tin-1)7r,id.
bptr points to b(n-1)r = £(n-2)r

e{ n)Ir

"eptr points to c(n—-1)r now.
"vreposition tptr ta di(n)r
“hr#gr into adder

“"hr # gi

“reposition eptr to ci(n-2)r
"hi#gr into adder

“push.

"fetch f(n—-2)i - fptr is ok

"#(n—-1)r = hingi + hrzgr
“push.

"set counter to n
“f(n-1)i = —hr#gi + hingr
= n-1

"decrement tptr,

“"write t(k)r from adder
"also store t(k)r in DPX
"push out €(k)i
"f(k—-1)i is ready.
“write t(k)i

“"also store t{(k)i in DPX
"ty # er

“fetch e(k-2)r

"¢i # er

store in DPY

"decrement counter ~ test is next

done:

281

fmul dpx(ti), dpy(ei)
beq done;
fsubr fm, zero;
fmul dpx(tr),dpytei);
incma
fsubr fm:; zero;
fmul;
dpy(er)<md
sub xinc, fptr; setma;
fadd +m, fai
fmul
fsubr €m, fa;
dpy(ei)<imd
fadd dpy{fr), fa;
incma
fadd dpy(fi), fa;
dpy(fr)<md;
br reverse

return
$end

“Ei % ei

"branch out if counter = O
"-er#tr into adder

“tr # ei

"fetch e(k-2)i

"-er#ti into adder

"push,

"e(k-2)r is ready, store in DPY
"fetch f(k-2)r

"—er#¥tr + pixnti

“"#inal push.

"—er#ti — eixtr

"e(k-2)i is ready, store in DPY
"t({k-1)r = fr — er#tr + eiwti
"fetch f(k-2)i

"t(k-1)i = fi -~ er#ti -~ ei#tr
“#(k-2)r is ready, store in DPY
"loop back - and k = k-1

