VARTABLE NORM DECONVOLUTION

William Gray

Variable Norm Deconvolution is a generalization of Wiggin's Minimum
Entropy Deconvolution. It is an iterative multichannel method which tries
to achieve a deconvolution with a small number of events and least resi-
dual error. It is shown to be related to minimizing the entropy of the
inputs. An efficient implementation in the frequency domain is presented.
It is applied to synthetics and a real data set. Results are subjectively

equivalent to those achieved with other methods of deconvolution.
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Introduction

The recorded seismic trace can be represented by a source wavelet
convolved with a reflectivity series plus additive noise. Deconvolution
is a process which estimates a reflectivity series from the recorded
trace.

Currently variants of predictive or homomorphic deconvolution are
used to estimate the reflectivity series when the source wavelet is
unknown. Predictive deconvolution assumes a white reflectivity series
which is uncorrelated with the noise. It estimates a source wavelet and
then finds an inverse which is convolved with the recorded data to yield
a reflectivity series. This method assumes the source wavelet is minimum
phase, an assumption that in many situations is incorrect.

Homomorphic deconvolution assumes the source wavelet and reflectivity
series are separable in the cepstral domain. To be separable the source
wavelet must be slowly varying relative to the reflectivity series.

This method has problems when the noise level is high or the source has
high cepstral components.

Recently Ralph Wiggins [1] developed Minimum Entropy Deconvolution.
It differs from previous methods because no assumptions except ergodicity
are made about the source wavelet. MED attempts to account for the ob-
served data in terms of a small number of large events and with the smal-
lest residual error. There is an important trade off here that is effect-
ed by the density of events and the variance of their amplitudes.

Claerbout [2], realized this and consequently introduced parsimon-
ious deconvolution in SEP 13. Intuitively he felt that MED is exces-
sively biased towards the larger events and a method which '"sees" more
of the data would result in a better deconvolution. Claerbout uses the
concept of parsimony to define a better deconvolution.

The law of parsimony relates to economy of description. When loosely
applied to deconvolution it requires that no more events than necessary
be allowed to account for the recorded data. One deconvolution is said
to be more parsimonious than another when it contains fewer events and

has the same residual error. A paper by Ferguson [3] gives an excellent
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discussion of parsimony and entropy in factor analysis.
Here a variable norm deconvolution is introduced. It is a general-

ization of MED. Where MED maximizes the varimax norm of the reflectivity

series averaged over the channels,
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When o=4 the variable norm deconvolution reduces to MED.

The parameter o governs the relative weightings of the amplitudes.
Large values of a yield deconvolutions which are biased towards the
larger events. Economic considerations can also determine the choice of
norm. Large values of oo v 6) require four or five iterations to

convergence. Small values (o "~ 2.2) can require ten to forty iterations.

Derivation of the Algorithm

An algorithm to maximize U(a) is derived in the time domain.
The derivation closely follows that of Wiggin's for the MED algorithm.
Let yij be the jth sample of the signal recorded on channel i
where there are nt samples per channel and nch channels. Let fk
be the kth sample of an inverse filter having nf samples. The reflect-

ivity series, Xij » is the convolution of the recorded signal and in-

verse filter,
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It is scale invariant or homogeneous so the gains on different

channels do not affect the solution.

To find an inverse filter that gives a relative maximum of U(a) s

take the partial of U(a) with respect to the filter coefficients. When

the partial vector is zero, a relative maximum is found.
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Setting (5) to zero and using (6) gives a non linear expression

relating an optimal reflectivity series to the recorded signal.
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To solve (7) iteratively assume Xij in the sum on the left is
defined by (3) and all other occurrences are computed from the previous

estimate, then (7) is written,
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Using matrix notation (8) can be simply expressed as

Rf = g (9)
where
R 1is a weighted sum of the autocorrelation matrices of the
inputs,
f 1is an unknown filter,
and

g 1is a weighted sum of crosscorrelations between the inputs
and the current estimates of the reflectivity series to some

power where their signs are retained.

When o=4 equation (8) reduces to
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This is Wiggin's basic equation for Minimum Entropy Deconvolution.
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Frequency Domain Implementation

The algorithm for variable norm deconvolution is implemented in
the frequency domain because it is faster. Let capital letters repre—
sent the fourier transforms of the corresponding time domain variables.
A bar over a variable represents its complex conjugate. The following is
a verbal step by step description of a flow chart used to program this
algorithm.

Initialization is accomplished by setting the inverse to a unit

spike and transforming,

f(t) <« d(t—to)

F(w) <« FFT(f(t)) . (11

The shape of the final inverse filter is invarient to the initial time

shift tO . The length of £(t) should be that of the recorded trace.
Vectors R and G are used to accumulate the weighted auto and

cross correlations of the channels. They are equivalent to R and g

of (9). At the start of each iteration they are zeroed,

R(w) <« O
Gw) < 0 . (12)

Each trace, y(t) , is read and transformed.
Y(w) <« FFT(y(t)) (13)
Before transforming the input trace it may be necessary to double its
length by zero padding to prevent aliasing due to performing convolution
by multiplication in the frequency domain. This is especially important

when the inverse filter has a lot of high frequency energy.

The reflectivity series is computed

X(w) <« F(w) - Y(w) (14)
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and inverse transformed,

x(t) < IFFT(x{(w)) . (15)

The scale factors,
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are found and the current estimate of the reflectivity series weighted,

x' () < |x() ¥ sgn(x(e)) (18)
and its transform computed,
X'"(w) < FFT(x'(t)) . (19)

The auto and cross correlations are found, then weighted and added into

the accumulation vectors,

R(w) < R(w) + ¢ Y(w) Y(w)

G(w) « G(w) +d Y(w) X'(w) (20)

Steps described by (13) to (20) are performed on each trace. When

all have been processed the inverse filter is found by spectral division,
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F(w) <«

This step is related to solving the Toeplitz system (9) in the time
domain. The parameter X 1is analogous to the white noise added to the
zero lag auto correlation. It is proportional to the inverse of the
squared signal to noise ratio of the recorded data.

In practice it was found that setting the d.c. term of G(w) to
zero improves the stability of the algorithm. Physically this makes
sense because source wavelets are zero mean.

The new inverse filter is scaled so it has unit power,

Fw) < _Fw) . (22)
(Z F(w') F()

wl

The norms for each channel are then compared with the norms of the
previous iteration. Convergence is assumed if the differences are

less than some prespecified tolerence. If another iteration is required
steps described by (12) to (22) are repeated.

The final inverse is used to deconvolve the input data by the steps
described by (13) through (15). The deconvolved output must be time
shifted by tO of step (11) to correct for the time delay introduced
by the inverse filter.

The algorithm outlined above often is unstable because it tries to
spike the channel with highest U(a) . This is avoided when the contri-
bution of each channel to the auto and cross correlations is made inversely

proportional to its norm. Dividing ¢ and d of equations (16) and (17)

by the norm gives

c = — (23)
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and

d=—1 (24)

Using these scale factors simplifies the algorithm as R(w) needs to be
computed only on the first iteration. This modification causes the al-

gorithm to seek a solution where the norms on all channels are nearly

the same.

Properties of the Algorithm

Assuming an infinite time series and a single channel the algorithm
yields an inverse filter which spikes the data. This is shown for o=4
Let the initial filter be a delta function at t so that its Four-

0
ier transform is

F(w)=eiw(t—t0) . (25)

It follows that the initial reflectivity series is

X(w) = Y(w)el(t ) (26)
Raising a time series to the nth power in the time domain is equiv—

alent to convolving it with itself n times in the frequency domain.

Neglecting scale factors the inverse filter is written,

P(u) = L0 [XW) * X(w) * X(u)] (27)
Y(w) Y(w)

Substituting (26) for X(w) in (27) and realizing that exponentials

can be factored out of the convolutions gives



- Y (w) Y*B(w) eiw(t_tO)

Y(w) Y(w)

F(w) (28)

*
where Y(i) represents the transform of the recorded data convolved with
itself three times.

After n iterations the reflectivity series is

*3n(w) eiw(t—t

X(w) = Y(w) F(w) = Y 0 (29)

or in the time domain after shifting the output by tO s

x(t) = yo0(t) (30)

As n goes to infinity the biggest amplitude grows faster than the

rest of the trace resulting in a single spike.

Trying to extend the results above to the multichannel case was too

difficult. The equivalent expression to (28) for the multichannel case is,
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The effects of variable norm deconvolution are surprisingly similar
to spectral smoothing. Figure 1 illustrates its smoothing property. The

convolutional model for seismic data is

Ve = (x * b)t + n, (32)
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where bt is the source waveform and n. is additive noise. Using

synthetic data each component, s(t) , of the model was weighted by

s'(t) = |s(t)|¥ sgn(s(t)) . (33)

The spectrums of the weighted series for different values of a are

displayed below the input series. The parameter o controls the

amount of smoothing. Increasing a clearly increases the smoothing.
The variable norm algorithm divides a function which has a smoothed

spectrum by the average spectrum to directly estimate the inverse wave-

let. This is similar to spectral smoothing as it divides the average

spectrum of an ensemble by a smoothed version. From the result a min-

imum phase source wavelet is derived.
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Application to Synthetics

Synthetic data sets are used to show the properties of the variable

norm algorithm when the density of events and noise levels are varied.

Figure 2 Synthetic wavelet, its spectrum, estimated inverse spectrum,
and inverse wavelet.

The same source wavelet is used for all examples. It is displayed

in Figure 2 where the inverse transform, F(w) , was found from

Fw) = B(w)

(34)
B(w)B(w) + (l.x10_8) L B(w")B(w")

U)'

The inverse wavelet was computed by inverse transforming F(w)

The length of the source wavelet is 23 samples, that of the synthetic
seismograms is 128 samples. Events were not allowed after sample 105 to
eliminate truncation effects. For real data, the end effects can be mini-
mized by using a triangular taper. Convergence of the algorithm was as-
sumed when the norm of the estimate of the reflectivity series of the first
trace changed by less than .00l from that of the previous iteration. All
examples were initialized by a unit spike in the first sample of the in-
verse filter. The trace lengths were doubled to eliminate convolutional

aliasing.



Reflectivity Series Synthetics
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Figure 3 Synthetics (right) for low density reflectivity series (left).

The first test was practically noise free and had a low density of
events. Figure 3 displays the inputs. On the left is the reflectivity
series with density (.05) or about one event per twenty samples. Each
event has its time and amplitude drawn from a uniform distribution. On
the right are the synthetics resulting from convolving the source wave-
let (Figure 2) with the reflectivity series and adding noise drawn from
a uniform distribution. The noise level is about .00l that of the

largest event.
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Figure 4 Results for low density reflectivity series (.05), low noise (.001).

Each column displays for a different o the estimated reflectivity
series, inverse spectrum, forward wavelet, and inverse wavelet.

The results of the first test are shown in Figure 4 for

4, and 6.

o =2.2,
The estimates of the source wavelet, inverse spectrum, and
inverse filter are displayed below the deconvolutions. The source wave-
let was estimated using equation (34) where the roles of the source and
inverse are reversed.

For o = 6 the inverse filter almost spikes the fifth trace and
clutters the others up. This is generally caused by choosing too high

a norm. For o =4 , the algorithm is still trying to spike the fifth

trace but the other traces constrain it so fairly good results are ob-
tained. The best results were achieved with o = 2.2 Close compari-
son with Figures 2 and 3 shows a nearly perfect deconvolution and esti-
mate of the source.

These results imply that setting a

When

small yields the best decon-

volution. o = 2 nothing happens as U(a) = 1 When o <2
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the algorithm tries to equalize the amplitudes on all channels. The
results look like the noise displayed in Figure 1. Tt seems that «a
just barely greater than 2 would yield the best deconvolution.

This is wrong as the next example (Figure 5) shows. Letting
o = 4, and 6 were also tried. When o = 6 the algorithm spiked one

trace. For o = 4 the deconvolution was a little noisier than o = 2.5

but converged in eight iterations.
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Figure 5 High density (.3) reflectivity series and synthetics on the left.
On the right are results for o = 2.05 and 2.5. a = 2.5 yields

a near perfect deconvolution. o = 2.05 hardly changes the inputs.

Figure 1 shows that varying o has little effects on the spectrum
of noise. Several tests on synthetics with varying levels of additive
noise were performed.

Figure 6 shows results from synthetics with an ambient noise level
of .1 and reflectivity series density .05. The deconvolution for o = 2.5

is better than o = 4 for all but the fifth channel. As in Figure 4,
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when o = 4 the fifth channel is given too high a weight. This is

because its norm is about twice as high as any other channel.
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Figure 6 Results for moderate noise level. RMS signal to noise ratio is
3.8, ambient level is .1

When the ambient noise level reached about .25 the results started
degenerating. Figure 7 shows deconvolutions for the same data as in
Figure 6 but with noise levels of .3 and .7 . The inverse spectrums
have some similarity to the spectrum of the source wavelet. It seems
that at high noise levels the inverse filter that maximizes the norm

is the time reversed source wavelet - a matched filter.
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Figure 7 Results for high noise levels. For the o = 2.5 deconvolution
the ambient noise level was .3 and RMS signal to noise ratio 1.1

For the o = 4 case the ambient noise is .75 and signal to noise

ratio .42 . Inputs for the o = 2.5 case are displayed on the
left.

Application to Field Recorded Data

Marine seismic data recorded in 1975 for the USGS in the Gulf of
Alaska was available for testing. The source was twenty-two airguns of
1200 cu. in. size. Six seconds of data were recorded at a sampling rate
of 4 ms on each of forty-eight channels. The near trace offset was 200M
and the far trace 2550M.

The data was chosen for deconvolution because bubble oscillations of
the reflected pressure pulse have noticeable amplitude for 250 ms after
the initial pulse. These low frequency oscillations obscure primaries

and are difficult to remove with stacking.
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Two seconds of data on each of the near sixteen traces were used
as inputs to the algorithm. A triangular taper was applied to reduce
truncation effects and the d.c. component of each trace removed. Three
deconvolutions for o = 2.5, 4, and 6 are presented in Figures 11, 12,
and 13. For comparison the original data and deconvolutions achieved
with spectral smoothing and parsimony are presented in Figures 10, 14,
and 15. Only two seconds of the near twenty-four traces are displayed.
The same time varying gain correction was applied to the original data
and deconvolutions before plotting.

The inverse spectrums estimated source wavelets and inverse filters
are displayed in Figure 9. The effect of increasing o is clearly re-
lated to the power present in the higher frequencies of the spectrums.

The estimated source wavelets are ringy because of a hole in the inverse

spectrum at 60 Hz.

M FF .

) b
n‘_‘-"'__.n g,y SN VA
h i o 25
. . PN -
bl e HU’ i g il
M FF
P Selitrsnotimere :
h i x> 4
— "w'.' oo P V. SN
b
o T 6

-,

==

e Avw ' "ﬂrhr M

AadlA
iy

Figure 9 Spectrums of the inverse filters, estimated source wavelets, and
inverse filters for variable norm deconvolutions on field data.



201

Figure 11
Variable norm deconvolution for
after 6 iterations.

Bubble pulse is denoted by the dots
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Figure 13

Figure 12

Variable norm deconvolution for

Variable norm deconvolution for

o0 =6
after 5 iterations

2.5

after 9 iterations



Figure 15

Figure 14

Parsimonious Deconvolution

Spectral Smoothing Deconvolution
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Objective comparison of the deconvolutions is difficult. All have
eliminated the prominent bubble oscillation labeled on the original data.
The deconvolution for o = 6 looks noisy but when viewed from the side at
a low angle it shows the layering near the sea floor in greater detail than
any of the others. Deeper in the section it seems to have degraded some
reflections. All the variable norm deconvolutions have a slightly non-
causal source estimate. This is evidenced by a small amount of energy

before the sea floor reflection.

Conclusion

The variable norm algorithm was developed because MED seemed exces-
sively biased towards the larger amplitudes of the recorded data. The
parameter o seems to govern this bias. This has not been shown theore-
tically but is indicated by the deconvolutions performed on both synthe-

tic and field data.
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