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Chapter 5. Source Waveform Estimation

The ray theory approximation and the wave equation approach
to multiples suppression described in Chapters 2 and 3 both require
an a priori knowledge of the source waveform. As mentioned in
Chapter 2, once we know the source signature, we can go two ways:

1) either we can incorporate it into the computer algorithms as a
boundary condition or 2) we can deconvolve the input data with the
known waveform and assume in the algorithm a spike-like shot wavelet.
In the first case, unless the waveform is guaranteed to be minimum
phase, the algorithms become highly unstable. For this reason we
prefer the second alternative.

Source waveform estimation has been a major problem in geophysics
for quite a while and although several methods have been discussed
in the literature no completely satisfactory answer to the problem
exists. We do not have a completely satisfactory solution either
and what follows should be considered as just the preliminary steps
toward the proper incorporation of this very important parameter into
our scheme for multiples suppression.

In this chapter I intend to discuss two procedures which,
despite their limited range of applicability, fit well into our
general approach to the problem of multiple suppression. The first
one is based on the Noah algorithm of Chapter 2 and the second on a
recursive optimization intended to minimize the power of the
recorded seismogram. Both techniques are illustrated with synthetic

and real examples.
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5.1. Slanted Noah Waveform Estimation

Riley [17] briefly mentioned the possibility of computing the
shot waveform in the case of deep water multiples from the same Noah
algorithm. Below I describe an extension of Riley's ideas which is
more consistent with our initial assumptions and input data. It
incorporates slanted propagation and accounts for lateral variations
of the waveforms and reflection coefficients. The technique is
best described if we Z-transform our variables. We begin by assuming

that we have a seismogram at the surface

R = Zr, =z (5-1)

where we can clearly differentiate the primaries within a gate that

goes from N1 to N2
N2 .
P = I r gz (5-2)
N t
1
and the corresponding first order multiples in the gate N3 to
Ny
N
4 t
M = I r_z (5-3)
N t
3

By "clearly differentiate" we mean that we can choose both gates
so that they do not overlap (Nj > N2 ) and that no new primaries
come into the multiples gate. This situation is most likely to

apply with deep sea bottom multiples. In other words, if
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c = Xc,_  z (5-4)

represents the reflection coefficient sequence, then we ask for

c, 2 0 din the gate N3 <tc< N4 . Then if we designate

B = b z (5-5)

as its inverse, according to Figure 5.1 we can approximately

write

Py = By (5-7a)
P2 = Bl ¢y (5-7b)
M2 = - B0 ¢y (5-7¢)

where 0, 1, 2 refer to different surface and sub-surface locations.
Taken separately, relations (5-7) are only true for vertical propaga-
tion. Nevertheless, if the gates for P and M are not chosen to
be very long, they represent a good approximation in the slanted

case. Equations (5-7) imply that
P, P, = -B, M (5-8a)

or

(Pl P2 ) Hl = - M2 (5-8b)
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These last two relations allow us to compute B or H following
any of the already known procedures for filter estimation, since M,
and the product PlPZ can be regarded as an input-output pair. 1In
the time domain, all the products in (5-8) are replaced by convolu-
tions.

Next we will discuss some practical aspects of the computation
of equations (5-8).

5.2. Gating the Primaries and the Multiples

In the problem of multiples suppression where usually a predic-
tion is subtracted from the original seismogram, the correct timing
of the variables involved is critical. In our case however, we require

only a reasonable gating of the primaries (P1 and P and the

5 )
multiple (M2) in equations (5-8) . Since picking the primary gate
is not a major problem, the situation reduces to correctly predicting
the multiples arrivals.

In the case of a flat sea bottom, the problem is trivial and
the first order multiple should arrive at twice the primary time,
unless the location of t = 0 was not well-defined in the records.
Even in this case, the inconvenience can be easily corrected.

If the sea bottom is irregular, the travel time associated with
each bounce can vary from path to path, especially at large angles
of propagation (stacking). The situation is illustrated in Figures
5.2 and 5.3. Figure 5.2 shows the same section of Chapter 4 (Figures
4.8,9) but for a plane wave that propagates from left to right at 15
degrees, as indicated in the upper-left corner. A program designed
to pick up primary and multiple arrivals from this section was run

under the assumption that the multiple arrived at twice the primary



travel time. The resulting gates are shown in Figure 5.3. Toward the
flat portion of the data the program did a reasonable job, but in the
left dipping part it missed the multiple practically everywhere.

In order to get the proper result, a correction has to be made
to account for both the slanted propagation and the dipping of the
sea bottom. The slanted migration theory previously developed correctly
models these arrivals, and it is only a matter of running the forward
problem, using the primary gate as input, to predict the arrival times
of the multiples. Appendix 2 includes a simple ray approximation
analysis of the situation and Figures 5.4 and 5.5 illustrate the results
of such analysis. Taking into account the slanted propagation, but
not the dip, we obtain the gates shown in Figure 5.4. The result is
much better than the one in Figure 5.3 but still the multiple is
missed in those places where the dip is significant. Finally, in
Figure 5.5 we incorporate both corrections according to the final
relations of Appendix 2.

5.3. The Estimation of the Filters

Once the input and output in the filter equation (5-8) have been
properly defined, we must consider what algorithm we shall use in
order to compute the filters B or H . We could follow the

standard procedure of minimizing the L2 norm. For equation (5-8)

that means minimizing the quadratic form

E = min|M

+ Plelz (5-9)
By

281
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However, we have to include the following considerations:
1) The length of the gates is going to be rather short, thus
10 P2 and

M2 (appending zeros at the end). A more general treatment of end-

we expect serious end-effects by just truncating P

effects could be achieved by using a procedure of the type of Burg
spectral estimation.

2) We must give a greater weight to the beginning of the gates,
where the information is going to be less polluted. This applies
especially to the multiple gates, where it is important not to have
new primaries within the gate. A weighted least square procedure,
with the beginning of the gates emphasized over its ends, accounts
for this requirement.

3) The presence of noise in P and M could cause a large
amount of noise in the predicted B . Thus we would like to add
some constraints to the algorithm which tend to drive down the total
power (including noise) in B while maintaining a low power in
Pl P2 + B1 M2 .

The last two conditions are met, if instead of (5-9), we
minimize the more general quadratic form

E = min I w,|(M,B,+P.P.) |2
itv2v1 "1 2

B,
i

= 12
+ I wi[ (B.i—Bi)[ (5-10)

where w, are the weights and Ei the default solutions for Bi .

In our case we can make Bi equal to an average of earlier estimations
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of Bi - A Levinson shaping filter calculation, reorganized to
resemble the Burg spectral estimation procedure according to the
constraints in (5-10), was used in order to compute the following
examples.

5.4. Synthetic and Field Data Examples

The model shown in Figure 5.6 was intended to test the proposed
technique under conditions as close as possible to a real data
situation. Figure 5.6a shows a portion of the slant stacked section
computed in the previous chapter, corresponding to an angle of propa-
gation of 20°. A synthetic model of reflection coefficients mimicking
the field data was produced as shown in Figure 5.6b. It includes
4 dipping reflectors with laterally varying reflection coefficients
and a relatively large noisy background. 1In the figure, for display
purposes, the actual model was low-pass filtered.

A reflection seismogram was computed by running the forward
1-D problem with parameters equivalent to those of the actual field
data (Figure 5.6a). Each of the obtained traces was further convolved
with the direct arrivals of the corresponding field data traces.

These direct arrivals were taken from the near offset traces of each
gather and are shown in Figure 5.7a. The convolution was done in

the frequency domain, thus adding some extra numerical noise. The
final seismogram is shown in Figure 5.6c. It is evident that the dips

and background noise are greatly exaggerated in relation to the original
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Figure 5.6. A realistic synthetic model. Frame (a) shows a portion of
the section in Figure 4.8. A synthetic model intended to reproduce
few of the reflectors in (a) is shown in (b) . The actual model
is white, but for display purposes it was low-pass filtered. Frame
(c) shows the result of the forward slanted problem taking as input
this model and parameters equivalents to those of the field data in
frame (a) . Each trace has been convolved with the corresponding
direct arrivals in section 5.6(a). Another synthetic seismogram of
model (b), without noise, is shown at the right of 5.6 (c¢) to

help in the identification of primary and multiple arrivals.
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field data of Figure 5.6a. To help in the identification of the
primaries and multiples arrivals, a synthetic seismogram of the model
without noise and waveforms is shown to the right of the colored
synthetic seismogram.

With this computed seismogram as input data, the slanted Noah
algorithm was run with gates 150 points long (600 msec.) and a
filter length of 100 points (400 msec.). These values, of course,
are greatly exaggerated in relation to those that we would use in a
real data case. This was done because, first, we knew the model
a priori and, secondly, the waveforms (the direct arrivals) were
quite long (500 msec.). The estimated waveforms are displayed in
Figure 5.7b. By comparing them with the initial direct arrivals in
5.7a, we can see a reasonably good estimation is obtained for the
initial part of the wavelet, but as expected, the estimation worsens
toward the end. Besides the approximate nature of the theory, that
prohibits long gates and estimates, this is probably due to the
applied weights which tend to emphasize the beginning of the gates
in relation to their ends.

In Figure 5.8 we repeat the same calculations, but this time
using the real slant stacked section of Figure 5.6a which is also
shown in Figure 5.8a. For this case the gates were reduced to 100
points (400 msec.) and the filters to 50 points (200 msec.). The
estimated waveforms are shown in Figure 5.9. As an evaluation of the
estimations, the original section was deconvolved with these wave-

forms and the result is shown in Figure 5.8b. For display purposes
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Figure 5.8. A field data example of source waveform estimation.
This figure repeats the estimation procedure of Figures 5.6 and 5.7,
but this time the original stacked section (Frame a) is used as
input data. The estimated waveforms are shown in Figure 5.9. 1In
order to evaluate the estimation, the original section was deconvolved
with these waveforms and the result is shown in Frame (b). A low-
pass filtered version of the deconvolved section is shown in Frame
(c). The spiking of the reflectors is evident, especially near the
bottom of the section. The energy present before t = 0, is due

to the frequency domain deconvolution technique that was applied.
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again, the deconvolved section was further low-pass filtered and the
final result is shown in Figure 5.8c. We can see that most of the
reflections have been considerably spiked. This is especially
noticeable in the reflections near the bottom of the section, which

in the original seismograms appear to be quite ringing. The precursory
energy before the first arrival is typical of deconvolutions that are
performed in the frequency domain.

Despite these encouraging results, a word of caution has to be
added. The presence of long direct arrivals in the recorded gathers
tends to imply long waveforms in the stacked section. The proposed
technique however, does not allow for long estimates. This poses
a serious question for the future of the approach, since after removing
the estimated waveforms, we still probably are left with a long
component of the original waveform. The use of the direct arrivals
as a means of compressing the waveform, previously to its estimation,
currently is being explored.

5.5. An Optimization Technique for Multiple Suppression and

Waveform estimation

We end the chapter by presenting the preliminary tests of a
different approach to multiple suppression and waveform estimation,
which by itself or in conjunction with the theory above discussed,
opens new perspectives for the problem. One of the major advantages
of this approach is that both the waveform and the reflection coef-
ficient sequence are estimated simultaneously through an algorithm

much simpler than the one previously discussed. At the present the
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technique has been developed only for the case of vertical
propagation, but hopefully it can be extended to slanted propa-
gations.

In the following we will implicitly assume that all the variables
have been Z-transformed. Moreover, we will be talking about three
types of seismograms:

1) The deconvolved or whitened Noah seismogram U , which is
a seismogram where all the multiple reflections and the shot wave-
form have been removed. It corresponds to what we called reflection
coefficient sequence in Chapter 2.

2) The colored Noah seismogram U' with multiples removed
but not the waveform. If as before we designate the waveform as
B , then we will have that U' =B U .

3) The recorded seismogram R , which contains both multiples
and waveform.

With these notations, Riley showed that the basic Noah algorithm

for vertical propagation can be written in Z-transforms as

U'=BU=BR/(B+R) (5-11)

Knowing R and B , this relation allows us to compute U
or U' . A poor estimate of B will produce a U' not totally
free from surface multiples. Since the remaining multiples add
power to the seismogram, we can expect that the minimization of
ik

IIU with respect to B , would improve the estimates of U’
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and B . A non-linear least square approach to the problem leads

to the minimization of the length of

U' +dU0' =U' + (5U'/3 B)dB =U' - U2 dB = 0 (5-12)

Equation (5-12) again can be interpreted as a filter estimation
problem for dB with U being the input and U' the output. Then

a recursion can be organized according to the following scheme:

—— — ' 1 1 —
dBi < Ui s Ui , using equation (5-12)
Biyg <~ By *+dBy
1 —— e . I3 -
Ui+l , Ui+l < Bi+l s Ri » using Noah relation (5-11)

where i refers to the recursion number and not the vectors'
components.

As one would expect, the choice of a "good" starting value is
critical. One possibility is to try B =0 or B = 1, 0, 0, ...
and then define U and U’ through (5-11). Also we could try to
start with U = U' = R and then use (5-11) to define B . Finally we
could start with the results of the previously discussed technique.
The solution of the filter equation (5-12) can be obtained with an
algorithm similar to that of paragraph 5.3.

In order to test the resolution of the technique and its
ability to handle relatively complex situations, synthetic seismograms

were produced according to the models and waveform shown in Figure 5.10.
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! Z e. Model 5 f. Synthetic shot waveform

Figure 5.10

B= (-.5,.5,1.,.5,-.4,.3,-.2)
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A re-scaled, tapered version of the first primary was taken as an
initial estimate for B . All the synthetic seismograms were made
150 points long and for display purposes were convolved with a three
point binomial wavelet.

Model 1 is a "good" model, used mainly to test the technique
in nearly optimal conditions. It took 9 iterations to achieve the

desired degree of convergence (IIdB[[/![BI[ < 10—3

). The results
are shown in Figure 5.11.

Model 2 was used to test the degree of resolution in relation to
the strength of the reflectors. As we see in Figure 5.12, the final
U after 15 iterations is reasonably good and only the last reflector
was lost. The estimated waveform is not as good as in the previous
case, but this result could be greatly improved by extending the
corresponding synthetic seismogram beyond 150 points.

Model 3 was meant to test resolution in terms of separation
among reflectors. The first two reflectors are 5 points apart and
the last ome only 3 points apart (notice that the actual waveform is
7 points long). Figure 5.13 shows quite a good result both in terms
of B and U .

Model 4 tries a complex situation, that is a small primary which
coincides with the first multiple. As Figure 5.14 shows, our technique
cannot handle this type of situation. The second reflector was lost
in the final U and the estimated waveform is rather poor.

Finally Model 5 tried another type of difficulty, where we
expected that this technique would be less sensitive than our previous
one: shallow water. In this case the first multiple arrives before the
first primary has died completely. Despite our expectations, the

recursion flatly rejected the model: it diverged very quickly!
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